Skip to main content

Advertisement

Log in

A Field-Based Method for Determination of Dissolved Inorganic Carbon in Water Based on CO2 and Carbonate Equilibria

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

The processing, storage, and flux of inorganic carbon in rivers and streams play an influential role in the lateral transfer of atmospheric and terrestrial carbon to the marine environment. Quantifying and understanding this transfer requires a rapid and accurate means of measuring representative concentrations of dissolved inorganic carbon (DIC) and CO2 in field settings. This paper describes a field method for the determination of DIC based on the direct measurement of dissolved CO2 using a commercial carbonation meter. A 100-mL water sample is combined with 10 mL of a high ionic strength, low-pH, citrate buffer, mixed well, and the dissolved CO2 concentration is measured directly. The DIC is then calculated based on the dissolved CO2 concentration, buffer-controlled ionic strength, pH, and temperature of the mixture. The method was accurate, precise, and comparable to standard laboratory analytical methods when tested using prepared sodium bicarbonate solutions up to 40 mM DIC, North Atlantic seawater, commercial bottled waters, and carbonate spring waters. Coal mine drainage waters were also tested and often contained higher DIC concentrations in the field than in subsequent laboratory measurements; the greatest discrepancy was for the high-CO2 samples, suggesting that degassing occurred after sample collection. For chemically unstable waters and low-pH waters, such as those from high-CO2 mine waters, the proposed field DIC method may enable the collection of DIC data that are more representative of natural settings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Allison, J. D., Brown, D. S., & Novo-Gradac, K. (1991). MINTEQA2/PRODEFA2, a geochemical assessment model for environmental systems (U.S. Environmental Protection Agency EPA/600/3-91/021).

  • Bass, A. M., Bird, M. I., Morrison, M. J., & Gordon, J. (2012). CADICA: Continuous Automated Dissolved Inorganic Carbon Analyzer with application to aquatic carbon cycle science. Limnology and Oceanography Methods. doi:10.4319/lom.2012.10.10.

    Google Scholar 

  • Butler, J. N. (1982). Carbon dioxide equilibria and their applications. Reading: Addison-Wesley Publishing Company.

    Google Scholar 

  • Butman, D., & Raymond, P. A. (2011). Significant efflux of carbon dioxide from streams and rivers in the United States. Nature Geoscience. doi:10.1038/ngeo1294.

    Google Scholar 

  • Cravotta, C. A., Goode, D. J., Bartles, M. D., Risser, D. W., & Galeone, D. G. (2014). Surface water and groundwater interactions in an extensively mined watershed, upper Schuylkill River, Pennsylvania, USA. Hydrologic Proccesses. doi:10.1002/hyp.9885.

    Google Scholar 

  • De Gregorio, S., Camarda, M., Longo, M., Cappuzzo, S., Giudice, G., & Gurrieri, S. (2011). Long-term continuous monitoring of the dissolved CO2 performed by using a new device in groundwater of the Mt. Etna (southern Italy). Water Research. doi:10.1016/j.watres.2011.03.028.

    Google Scholar 

  • Deffeyes, K. S. (1965). Carbonate equilibria: a graphic and algebraic approach. Limnology and Oceanography. doi:10.4319/lo.1965.10.3.0412.

    Google Scholar 

  • Geroni, J. N., Cravotta, C. A., III, & Sapsford, D. J. (2012). Evolution of the chemistry of Fe bearing waters during CO2 degassing. Applied Geochemistry. doi:10.1016/j.apgeochem.2012.07.017.

    Google Scholar 

  • Hem, J. D. (1986). Study and interpretation of the chemical characteristics of natural water, 3rd Edition. Alexandria, VA, U.S. Geological Survey Water-Supply Paper 2254, United States Government Printing Office.

  • Johnson, M. S., Billett, M. F., Dinsmore, K. J., Wallin, M., Dyson, K. E., & Jassal, R. S. (2010). Direct and continuous measurement of dissolved carbon dioxide in freshwater aquatic systems—method and applications. Ecohydrology. doi:10.1002/eco.95.

    Google Scholar 

  • Kirby, C. S., & Cravotta, C. A. (2005). Net alkalinity and net acidity in mine drainage 1: theoretical considerations. Applied Geochemistry. doi:10.1016/j.apgeochem.2005.07.002.

    Google Scholar 

  • Kirby, C. S., Thomas, H. M., Southam, G., & Donald, R. (1999). Relative contributions of abiotic and biological factors in Fe(II) oxidation in mine drainage. Applied Geochemistry. doi:10.1016/S0883-2927(98)00071-7.

    Google Scholar 

  • Lauerwald, R., Hartmann, J., Moosdorf, N., Kempe, S., & Raymond, P. A. (2013). What controls the spatial patterns of the riverine carbonate system?—A case study for North America. Chemical Geology. doi:10.1016/j.chemgeo.2012.11.011.

    Google Scholar 

  • McDonald, C. P., Stets, E. G., Striegl, R. G., & Butman, D. (2013). Inorganic carbon loading as a primary driver of dissolved carbon dioxide concentrations in the lakes and reservoirs of the contiguous United States. Global Biogeochemical Cycles. doi:10.1002/gbc.20032.

    Google Scholar 

  • Plummer, L. N., & Busenberg, E. (1982). The solubilities of calcite, aragonite and vaterite in CO2-H2O solutions between 0 and 90°C, and an evaluation of the aqueous model for the system CaCO3-CO2-H2O. Geochimica et Cosmochimica Acta. doi:10.1016/0016-7037(82)90056-4.

    Google Scholar 

  • Regnier, P., Friedlingstein, P., Ciais, P., Mackenzie, F. T., Gruber, N., Janssens, I. A., et al. (2013). Anthropogenic perturbation of the carbon fluxes from land to ocean. [Review]. Nature Geoscience. doi:10.1038/ngeo1830.

    Google Scholar 

  • Ritz, G. F., & Collins, J. A. (2008). pH (Ver. 2.0). U.S. Geological Survey Techniques of Water-Resources Investigation (Vol. Book 9, Chap. A6, Sec. 6.4).

  • Stets, E. G., & Striegl, R. G. (2012). Carbon export by rivers draining the conterminous United States. Inland Waters. doi:10.5268/IW-2.4.510.

    Google Scholar 

  • Stumm, W., & Morgan, J. J. (1996). Aquatic chemistry, chemical equilibria and rates in natural waters (3rd ed.). New York: John Wiley & Sons.

    Google Scholar 

  • Thomas, J. F. J and Lynch, J. J. (1960). Determination of carbonate alkalinity in natural waters. J. Am. Water Works Assoc. doi:10.2307/41256203.

  • Vesper, D. J., & Edenborn, H. M. (2012). Determination of free CO2 in emergent groundwaters using a commercial beverage carbonation meter. Journal of Hydrology. doi:10.1016/j.jhydrol.2012.03.015.

    Google Scholar 

  • Vesper, D. J., & Smilley, M. J. (2010). The distribution and diel cycling of trace and rare earth elements in a coal mine drainage treatment wetland, Lambert Run, West Virginia. Applied Geochemistry, 25(6), 795–808. doi:10.1016/j.apgeochem.2010.02.010.

    Article  CAS  Google Scholar 

  • White, W. B. (1988). Geomorphology and hydrology of karst terrains. New York: Oxford University Press.

    Google Scholar 

  • Yasuda, T., Yonemura, S., & Tani, A. (2012). Comparison of the characteristics of small commercial NDIR CO2 sensor models and development of a portable CO2 measurement device. Sensors. doi:10.3390/s120303641.

    Google Scholar 

  • Younger, P. L., Banwart, S. A., & Hedin, R. S. (2002). Mine water hydrology, pollution, remediation (Environmental Pollution Volume 5). Dordrecht: Kluwer Academic Publishers.

    Google Scholar 

Download references

Acknowledgments

The authors thank Jill Riddell for help in collecting field data. This work was performed as part of the National Energy Technology Laboratory’s Regional University Alliance (NETL-RUA), a collaborative initiative of the NETL, under the RES contract DE-FE0004000.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dorothy J. Vesper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vesper, D.J., Edenborn, H.M., Billings, A.A. et al. A Field-Based Method for Determination of Dissolved Inorganic Carbon in Water Based on CO2 and Carbonate Equilibria. Water Air Soil Pollut 226, 28 (2015). https://doi.org/10.1007/s11270-015-2348-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-015-2348-z

Keywords

Navigation