Skip to main content

Advertisement

Log in

Can Biochar From Contaminated Biomass Be Applied Into Soil for Remediation Purposes?

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

The carbon rich material obtained from pyrolysis process, i.e. biochar, has been widely discussed during the last decade due to its utilisation as a soil amendment. Furthermore, there is an unsolved question of biomass disposal from phytoremediation technologies. The idea of contaminated biomass pyrolysis has appeared, but there is lack of information about possible biochar utilisation obtained by this process. The aim of our study was to observe sorption properties of biochar prepared from contaminated biomass and release of contaminants from biochar back into the environment. The biomass of fast growing trees and maize was harvested on a site significantly damaged by risk element contamination (Cd, Pb and Zn). Plant biomass was pyrolysed and then the batch (de)sorption experiments were settled. The results confirmed no significant differences in metal sorption ability between biochars prepared from contaminated and uncontaminated biomass under the same conditions. The trend of maximum sorption capacity of observed matrices followed the order: wood biochar + soil (WB + soil) > wood uncontaminated biochar + soil (WUB + soil) > maize biochar + soil (MB + soil) > soil for cadmium, WB + soil > WUB + soil > soil for lead and MB + soil > WUB + soil > WB + soil > soil for zinc. Despite of increase of Zn desorption from wood biochars, maximum sorption capacity of the final WB + soil system was comparable to the WUB+soil sample. Our laboratory experiments showed high potential of biochar from contaminated plants as a soil amendment with sorption abilities and minimal risk of metal release.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Anonymous, (1994). Public Notice No. 13/1994, regulating some details concerning the preservation of agricultural lands available. Czech Ministry of the Environment, Prague.

  • Bolster, C. H., & Hornberger, G. M. (2007). On the use of linearized Langmuir equations. Soil Science Society of America Journal, 71(6), 1796–1806.

    Article  CAS  Google Scholar 

  • Brunauer, S., Emmett, P. H., & Teller, E. (1938). Adsorption of gases in multimolecular layers. Journal of the American Chemical Society, 60(2), 309–319.

    Article  CAS  Google Scholar 

  • Cao, X., Ma, L., Gao, B., & Harris, W. (2009). Dairy-manure derived biochar effectively sorbs lead and atrazine. Environmental Science & Technology, 43(9), 3285–3291.

    Article  CAS  Google Scholar 

  • Chen, X., Chen, G., Chen, L., Chen, Y., Lehmann, J., McBride, M. B., & Hay, A. G. (2011). Adsorption of copper and zinc by biochars produced from pyrolysis of hardwood and corn straw in aqueous solution. Bioresource Technology, 102(19), 8877–8884.

    Article  CAS  Google Scholar 

  • Chun, Y., Sheng, G., Chiou, C. T., & Xing, B. (2004). Compositions and sorptive properties of crop residue-derived chars. Environmental Science & Technology, 38(17), 4649–4655.

    Article  CAS  Google Scholar 

  • CSN EN 15403 (2011). Solid alternative fuels—determination of ash. Prague, Czech Office for Standards, Metrology and Testing. (In Czech).

  • Fletcher, A. J., Smith, M. A., Heinemeyer, A., Lord, R., Ennism, C. J., Hodgsonm, E. M., & Farrar, K. (2014). Production factors controlling the physical characteristics of biochar derived from phytoremediation willow for agricultural applications. Bioenergy Resources, 7(1), 371–380.

    Article  CAS  Google Scholar 

  • Gaskin, J. W., Steiner, C., Harris, K., Das, K. C., & Bibens, B. (2008). Effect of low-temperature pyrolysis conditions on biochar for agricultural use. Transaction of American Society of Agricultural and Biological Engineers, 51(6), 2061–2069.

    Google Scholar 

  • Hao, L., Song, H., Zhang, L., Wan, X., Tang, Y., & Lv, Y. (2012). SiO2/graphene composite for selective adsorption of Pb(II) ion. Journal of Colloid and Interface Science, 369(1), 381–387.

    Article  CAS  Google Scholar 

  • ISO 11260 (1994). Soil quality—determination of effective cation exchange capacity and base saturation level using barium chloride solution. American National Standards Institute.

  • Jiang, J., Xu, R. K., Jiang, T. Y., & Li, Z. (2012). Immobilization of Cu(II), Pb(II) and Cd(II) by the addition of rice straw derived biochar to a simulated polluted Ultisol. Journal of Hazardous Materials, 229, 145–150.

    Article  Google Scholar 

  • Kubešová, M., & Kučera, J. (2010). Validation of k0 standardization method in neutron activation analysis—the use of Kayzero for Windows programme at the nuclear physics institute, Řež. Nuclear Instruments and Methods in Physics Research A, 622, 403–406.

    Article  Google Scholar 

  • Langmuir, I. (1916). The constitution and fundamental properties of solids and liquids. Part I. Solids. Journal of the American Chemical Society, 38(11), 2221–2295.

    Article  CAS  Google Scholar 

  • Lehmann, J. (2007). Bio-energy in the black. Frontiers in Ecology and the Environment, 5(7), 381–387.

    Article  Google Scholar 

  • Lu, H., Zhang, W., Yang, Y., Huang, X., Wang, S., & Qiu, R. (2012). Relative distribution of Pb2+ sorption mechanisms by sludge-derived biochar. Water Research, 46(3), 854–862.

    Article  CAS  Google Scholar 

  • Mohan, D., Pittman, C. U., Jr., Bricka, M., Smith, F., Yancey, B., Mohammad, J., Steele, P. H., Alexandre-Franco, M. F., Gómez-Serrano, V., & Gong, H. (2007). Sorption of arsenic, cadmium, and lead by chars produced from fast pyrolysis of wood and bark during bio-oil production. Journal of Colloid and Interface Science, 310(1), 57–73.

    Article  CAS  Google Scholar 

  • Morley, J. (1929). Compost and charcoal. The National Greenkeeper, 3(9), 8–26.

    Google Scholar 

  • Mustafa, S., Dilara, B., Naeem, A., Rahana, N., & Shahida, P. (2002). Sorption of metal ions on a mixed oxide [0.5 M SiO2:0.5 M Fe(OH)3]. Adsorption Science & Technology, 20(3), 215–230.

    Article  CAS  Google Scholar 

  • Nash, J. E., & Sutcliffe, J. V. (1970). River flow forecasting through conceptual models part I—a discussion of principles. Journal of Hydrology, 10(3), 282–290.

    Article  Google Scholar 

  • Němeček, J., Vácha, R., Podlešáková, E. (2010). Assessment of soil contamination in the Czech Republic. Research Institute for Soil and Water Conservation, Prague. (In Czech).

  • Novak, J. M., Busscher, W. J., David, L., Laird, D. L., Ahmedna, M., Watts, D. W., & Niandou, M. A. S. (2009). Biochar amendment on fertility of a southeaster coastal plain soil. Soil Science, 174(2), 105–112.

    Article  CAS  Google Scholar 

  • Pulford, I. D., & Watson, C. (2002). Phytoremediation of heavy metal-contaminated land by trees—a review. Environment International, 29(4), 529–540.

    Article  Google Scholar 

  • Qui, Y., Cheng, H., Xua, C., & Sheng, G. D. (2008). Surface characteristics of crop-residue-derived black carbon and lead (II) adsorption. Water Research, 42(3), 567–574.

    Article  Google Scholar 

  • Sas-Nowosielska, A., Kucharski, R., Malkowski, E., Pogrzeba, M., Kuperberg, J. M., & Krynski, K. (2004). Phytoextraction crop disposal—an unsolved problem. Environmental Pollution, 128(3), 373–379.

    Article  CAS  Google Scholar 

  • Sombroek, W. G. (1966). Amazon soils (Doctoral dissertation, Centre for agricultural publications and documentation).

  • Stals, M., Carleer, R., Reggers, G., Schreurs, S., & Yperman, J. (2010). Flash pyrolysis of heavy metal contaminated hardwoods from phytoremediation: characterisation of biomass, pyrolysis oil and char/ash fraction. Journal of Analytical and Applied Pyrolysis, 89(1), 22–29.

    Article  CAS  Google Scholar 

  • Šyc, M., Pohořelý, M., Kameníková, P., Habart, J., Svoboda, K., & Punčochář, M. (2012). Willow trees from heavy metals phytoextraction as energy crops. Biomass and Bioenergy, 37, 106–113.

    Article  Google Scholar 

  • Trakal, L., Komárek, M., Száková, J., Zemanová, V., & Tlustoš, P. (2011). Biochar application to metal-contaminated soil: evaluating of Cd, Cu, Pb and Zn sorption behavior using single- and multi-element sorption experiment. Plant, Soil and Environment, 57(8), 372–380.

    CAS  Google Scholar 

  • Trakal, L., Komárek, M., Száková, J., Tlustoš, P., Tejnecký, V., & Drábek, O. (2012). Sorption behavior of Cd, Cu, Pb, and Zn and their interactions in phytoremediated soil. International Journal of Phytoremediation, 14(8), 372–380.

    Article  Google Scholar 

  • Tryon, E. H. (1948). Effect of charcoal on certain physical, chemical and biological properties of forest soils. Ecological Monographs, 18, 81–115.

    Article  CAS  Google Scholar 

  • Uchimiya, M., Wartelle, L. H., Klasson, K. T., Fortier, C. A., & Lima, I. M. (2011). Influence of pyrolysis temperature on biochar property and function as a heavy metal sorbent in soil. Journal of Agriculture and Food Chemistry, 59(6), 2501–2510.

    Article  CAS  Google Scholar 

  • Uchimyia, M., Klasson, K. T., Wartelle, L. H., & Lima, I. M. (2011). Influence of soil properties on heavy metal sequestration by biochar amendment: 1. Copper sorption isotherms and the release of cation. Chemospere, 82(10), 1431–1437.

    Article  Google Scholar 

  • Ure, A. M., Quevauviller, P., Muntau, H., & Griepink, B. (1993). Speciation of heavy metal in soils and sediments. An account of the improvement and harmonization of extraction techniques undertaken under the auspices of the BCR of the commission of the European Communities. International Journal of Environmental Analytical Chemistry, 51(1–4), 135–151.

    Article  CAS  Google Scholar 

  • Visual MINTEQ ver. 3.1 (2014). Royal Institute of Technology, Div. of Land and Water Resources Engineering, Stockholm, Sweden. Available at: http://www2.lwr.kth.se/English/OurSoftware/vminteq/download.html.

  • Vysloužilová, M., Tlustoš, P., Száková, J., & Pavlíková, D. (2003). As, Cd, Pb and Zn uptake by Salix spp. clones grown in soils enriched by high loads of these elements. Plant, Soil and Environment, 9(5), 191–196.

    Google Scholar 

  • Xu, X., Cao, X., Zhao, L., Wang, H., Yu, H., & Gao, B. (2013). Removal of Cu, Zn, and Cd from aqueous solutions by the dairy manure-derived biochar. Environmental Science and Pollution Research, 20(1), 358–368.

    Article  CAS  Google Scholar 

  • Yuan, J. H., Xu, R. K., Qian, W., & Wang, R. H. (2011). Comparison of the ameliorating effects on an acidic Ultisol between four crop straws and their biochars. Journal of Soils and Sediments, 11(5), 741–750.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The financial support by CIGA (donated by the Czech University of Life Sciences Prague) project contract no. 20132007 is greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kateřina Břendová.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Břendová, K., Tlustoš, P. & Száková, J. Can Biochar From Contaminated Biomass Be Applied Into Soil for Remediation Purposes?. Water Air Soil Pollut 226, 193 (2015). https://doi.org/10.1007/s11270-015-2456-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-015-2456-9

Keywords

Navigation