Skip to main content
Log in

EPS and SMP as Stability Indicators During the Biofiltration of Diffuse Methane Emissions

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Biofiltration of an air stream polluted with diffuse CH4 concentrations of 0.19 % (v v−1) was carried out. These emissions can be encountered at different industrial facilities such as wastewater treatment plants and landfills. The effect of ammonium supplied in the nutrient solution was studied in a range from 0 to 1 g N-NH4 + L−1, taking account its effect on CH4 removal efficiency (RE), CO2 production, ammonium conversion and the occurrence of exopolymeric substances. Additional batch assays were performed in order to evaluate the most suitable pH and temperature ranges for the biomass used as inoculum. A conventional biofilter was operated along 225 days achieving maximum CH4 elimination capacities of up to 11.2 g CH4 m-3 h−1, corresponding to REs of 62 %, using 0.52 g N L−1 of ammonia as nitrogen source in the nutrient solution and operating at an empty bed residence time of 4.4 min. CO2 production values confirmed that most of this elimination was biological and not absorption into the liquid phase. The occurrence of instability periods resulted in a clear increase of the soluble microbial products (SMPs) contained in the liquid phase, especially in the protein fraction, which could be used as a monitoring tool to follow the stress conditions of the biofilter. Results indicate interesting links between the performance of the biofilter and the presence of extracellular polysaccharide and protein concentration in the liquid phase, with increasing concentrations detected when the process was not stable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abdel-aziz, S. M., Hamed, H. A., Mouafi, F. E., & Gad, A. S. (2012). Acidic pH-shock induces the production of an exopolysaccharide by the fungus Mucor rouxii: utilization of beet-molasses. New York Sci Journal, 5, 52–61.

    Google Scholar 

  • Allen, E. R., & Yang, Y. (1991). Biofiltration control of hydrogen sulfide emissions (Proceedings of the 84th annual meeting and exhibition of the air & waste management association). Vancouver: Air & Waste Management Association.

    Google Scholar 

  • Amaral, J. A., Ren, T., & Knowles, R. (1998). Atmospheric methane consumption by forest soils and extracted bacteria at different pH values. Applied and Environmental Microbiology, 64, 2397–2402.

    CAS  Google Scholar 

  • Anthonisen, A., Loehr, R., Prakasan, T., & Srineth, E. (1976). Inhibition of nitrification by ammonia and nitrous acid. Journal Water Pollution Control Federation, 48, 835–852.

    CAS  Google Scholar 

  • APHA-AWWA-WPCF. (1998). Standard methods for examination of water and wastewater (20th ed.). Washington: American Public Health Association.

    Google Scholar 

  • Avalos Ramirez, A., García-Aguilar, B. P., Peter Jones, J., & Heitz, M. (2012). Improvement of methane biofiltration by the addition of non-ionic surfactants to biofilters packed with inert materials. Process Biochemistry, 47, 76–82.

    Article  CAS  Google Scholar 

  • Barcón, T., Hernández, J., Gómez-Cuervo, S., Garrido, J. M., & Omil, F. (2015). Characterization and biological abatement of diffuse methane emissions and odour in an innovative wastewater treatment plant. Environmental Technology, 36, 37–41.

    Article  Google Scholar 

  • Bédard, C., & Knowles, R. (1989). Physiology, biochemistry, and specific inhibitors of CH4, NH4 + and CO oxidation by methanotrophs and nitrifiers. Microbiology and Mollecular Biology Reviews, 53, 68–84.

    Google Scholar 

  • Buntner, D., Sánchez, A., & Garrido, J. M. (2011). Three stages MBR (methanogenic, aerobic biofilm and membrane filtration) for the treatment of low-strength wastewaters. Water Science and Technology, 64, 397–402.

    Article  CAS  Google Scholar 

  • Buntner, D., Sánchez, A., & Garrido, J. M. (2013). Feasibility of combined UASB and MBR system in dairy wastewater treatment at ambient temperatures. Chemical Engineering Journal, 230, 475–481.

    Article  CAS  Google Scholar 

  • Cornish, A., Nicholls, K. M., Scott, D., Hunter, B. K., Aston, W. J., Higgins, I. J., & Sanders, J. K. M. (1984). In vivo 13C NMR investigations of methanol oxidation by the obligate methanotroph Methylosinus trichosporium OB3b. Journal of General Microbiology, 130, 2565–2575.

    CAS  Google Scholar 

  • Delhoménie, M., Bibeau, L., & Heitz, M. (2002). A study of the impact of particle size and adsorption phenomena in a compost-based biological filter. Chemical Engineering Science, 57, 4999–5010.

    Article  Google Scholar 

  • Drews, A. (2010). Membrane fouling in membrane bioreactors—characterization, contradictions, cause and cures. Journal of Membrane Science, 363, 1–28.

    Article  CAS  Google Scholar 

  • Drews, A., Mante, J., Iversen, V., Vocks, M., Lesjean, B., & Kraume, M. (2007). Impact of ambient conditions on SMP elimination and rejection in MBR. Water Research, 41, 3850–3858.

    Article  CAS  Google Scholar 

  • Dubois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A., & Smith, F. (1956). Colorimetric method for determination of sugars and related substances. Analytical Chemistry, 28, 350–356.

    Article  CAS  Google Scholar 

  • Gabriel, D., Maestre, J. P., Martín, L., Gamisans, X., & Lafuente, J. (2007). Characterization and performance of coconut fiber as packing material in the removal of ammonia in gas-phase biofilters. Biosystems Engineering, 97, 481–490.

    Article  Google Scholar 

  • Gebert, J., Gröngröft, A., & Miehlich, G. (2003). Kinetics of microbial landfill methane oxidation in biofilters. Waste Management, 23, 609–619.

    Article  CAS  Google Scholar 

  • Girard, M., Avalos Ramirez, A., Buelna, G., & Heitz, M. (2011). Biofiltration of methane at low concentrations representative of the piggery industry – influence of the methane and nitrogen concentrations. Chemical Engineering Journal, 168, 151–158.

    Article  CAS  Google Scholar 

  • Gordienko, A. S., Kurdish, I. K., & Kisten, A. G. (1997). Surface properties and adhesion of methane trophic bacteria. Journal of Water Chemistry and Technology, 19, 40–43.

    Google Scholar 

  • Gruzdev, N., Pinto, R., & Shlomo, S. (2011). Effect of desiccation on tolerance of salmonella enteric to multiple stresses. Applied and Environmental Microbiology, 77, 1667–1673.

    Article  CAS  Google Scholar 

  • Hernández, J., Prado, Ó. J., Almarcha, M., Lafuente, J., & Gabriel, D. (2010). Development and application of a hybrid inert/organic packing material for the biofiltration of composting off-gases mimics. Journal of Hazardous Materials, 178, 665–672.

    Article  Google Scholar 

  • Hilger, H. A., Liehr, S. K., & Barlaz, M. A. (1999). Exopolysaccharide control of methane oxidation in landfill cover soil. Journal of Environmental Engineering and Science, 125, 1113–1123.

    CAS  Google Scholar 

  • Hilger, H. A., Cranford, D. F., & Barlaz, M. A. (2000). Methane oxidation and microbial exopolymer production in landfill cover soil. Soil Biology and Biochemistry, 32, 457–467.

    Article  CAS  Google Scholar 

  • Jubany, I., Carrera, J., Lafuente, J., & Baeza, J. A. (2008). Start-up of a nitrification system with automatic control to treat highly concentrated ammonium wastewater: experimental results and modelling. Chemical Engineering Journal, 144, 407–419.

    Article  CAS  Google Scholar 

  • Kampschreur, M. J., Temmink, H., Kleerebezem, R., Jetten, M. S. M., & van Loosdrecht, M. C. M. (2009). Nitrous oxide emission during wastewater treatment. Water Research, 43, 4093–4103.

    Article  CAS  Google Scholar 

  • Kent, T. D., Williams, S. C., & Fitzpatrick, C. S. B. (2000). Ammoniacal nitrogen removal in biological aerated filters: the effect of media size. Water Environment, 14, 409–414.

    Article  Google Scholar 

  • Kiliç, N. K., & Dönmez, G. (2008). Environmental conditions affecting exopolysaccharide production by Pseudomonas aeruginosa, Micrococcus sp., and Ochrobactrum sp. Journal of Hazardous Materials, 154, 1019–1024.

    Article  Google Scholar 

  • King, G. M., & Schnell, S. (1994). Ammonium and nitrite inhibition of methane oxidation by Methylobacter albus BG8 and Methylosinus trichosporium OB3b at low methane concentrations. Applied Environmental Microbiology, 60, 3508–3513.

    CAS  Google Scholar 

  • López, J. C., Quijano, G., Souza, T. S. O., Estrada, J. M., Lebrero, R., & Muñoz, R. (2013). Biotechnologies for greenhouse gases (CH4, N2O and CO2) abatement: state of the art and challenges. Applied Microbiology and Biotechnology, 97, 2277–2303.

    Article  Google Scholar 

  • Lowry, O. H., Rosebrough, N. J., Farr, A. L., & Randall, R. J. (1951). Protein measurement with the folin phenol reagent. The Journal Biological Chemistry, 193, 265–275.

    CAS  Google Scholar 

  • Marvasi, M., Visscher, P. T., & Casillas Martinez, L. (2010). Exopolymeric substances (EPS) from Bacillus subtilis: polymers and genes encoding their synthesis. FEMS Microbiology Letters, 13, 1–9.

    Article  Google Scholar 

  • Menard, C., Avalos Ramirez, A., Nikiema, J., & Heitz, M. (2011). Analysis of the effects of temperature, amount of nutrient solution and the carbon dioxide concentration on methane biofiltration. Internation Journal of Sustainable Development and Planning, 6, 312–324.

    Article  Google Scholar 

  • Moon, K. E., Lee, S. Y., Lee, S. H., Ryu, H. W., & Cho, K. S. (2010). Earthworm cast as a promising filter bed material and its methanotrophic contribution to methane removal. Journal of Hazardous Materials, 176, 131–138.

    Article  CAS  Google Scholar 

  • Morgan-Sagastume, J. M., Revah, S., & Noyola, A. (2003). Pressure drop and gas distribution in compost based biofilters: medium mixing and composition effects. Environmental Technology, 24, 797–807.

    Article  CAS  Google Scholar 

  • Ni, B. J., Rittmann, B. E., & Yu, H. Q. (2011). Soluble microbial products and their implications in mixed culture biotechnology. Trends in Biotechnology, 29, 454–463.

    Article  CAS  Google Scholar 

  • Nikiema, J., Bibeau, L., Lavoie, J., Brzezinski, R., Vigneux, J., & Heitz, M. (2005). Biofiltration of methane: an experimental study. Chemical Engineering Journal, 113, 111–117.

    Article  CAS  Google Scholar 

  • Nikiema, J., Brzezinski, R., & Heitz, M. (2010). Influence of phosphorus, potassium, and copper on methane biofiltration performance. Canadian Journal of Civil Engineering, 37, 335–345.

    Article  CAS  Google Scholar 

  • Scheutz, C., Kjeldsen, P., Bogner, J. E., De Visscher, A., Gebert, J., Hilger, H. A., Huber-Humer, M., & Spokas, K. (2009). Microbial methane oxidation processes and technologies for mitigation of landfill gas emissions. Waste Management and Research, 27, 409–455.

    Article  CAS  Google Scholar 

  • Shekar, I. (2006). Degradation of xenobiotic compounds in environmental biotechnology: basic concepts and applications. India: I.K. International Pvt Ltd.

    Google Scholar 

  • Spokas, K. A., & Bogner, J. E. (2010). Limits and dynamics of methane oxidation in landfill cover soils. Waste Management, 31, 823–832.

    Article  Google Scholar 

  • Spokas, K. A., King, J., Wang, D., & Papiernik, S. (2007). Effects of soil fumigants on methanotrophic activity. Atmospheric Environment, 41, 8150–8162.

    Article  CAS  Google Scholar 

  • US EPA Inventory of U.S. greenhouse gas emissions and sinks 1990–2010. http://epa.gov/climatechange/emissions/usinventoryreport.html Accessed September 2012.

  • Vandecasteele, J. P. (2008). Petroleum microbiology: concepts, environmental implications, industrial applications. Paris: Editions Technip, IFP Publications.

    Google Scholar 

  • Veillette, M., Viens, P., Avalos Ramirez, A., Brzezinski, R., & Heitz, M. (2011). Effect of ammonium concentration on microbial population and performance of a biofilter treating air polluted with methane. Chemical Engineering Journal, 171, 114–1123.

    Article  Google Scholar 

  • Wilshusen, J. H., Hettiaratchi, J. P. A., & Stein, V. B. (2004a). Long-term behavior of passively aerated compost methanotrophic biofilter columns. Waste Management, 24, 643–653.

    Article  CAS  Google Scholar 

  • Wilshusen, J. H., Hettiaratchi, J. P. A., De Visscher, A., & Saint-Fort, R. (2004b). Methane oxidation and formation of EPS in compost: effect of oxygen concentration. Environmental Pollution, 129, 305–314.

    Article  CAS  Google Scholar 

  • Wrangstadh, M., Conway, P. L., & Kjelleberg, S. (1986). The production and release of an extracellular polysaccharide during starvation of a marine Pseudomonas sp. and the effect thereof on adhesion. Archives of Microbiology, 145, 220–227.

    Article  CAS  Google Scholar 

  • Zhang, X., Bishop, P. L., & Kinkle, B. K. (1999). Comparison of extraction methods for quantifying extracellular polymers in biofilms. Water Science and Technology, 39, 211–218.

    Article  CAS  Google Scholar 

  • Zhang, D., Wang, J., & Pan, X. (2006). Cadmium sorption by EPSs produced by anaerobic sludge under sulfate-reducing conditions. Journal of Hazardous Materials, 138, 589–593.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Spanish Government (projects INNOTRAZA, CTQ2010-20240 and RedNovedar, CTQ2014-51693-REDC), as well as the EU project LIVEWASTE (LIFE12 ENV/CY/000544). The authors belong to the Galician Competitive Research Group GRC 2013–032, programme co-funded by FEDER.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Omil.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hernández, J., Gómez-Cuervo, S. & Omil, F. EPS and SMP as Stability Indicators During the Biofiltration of Diffuse Methane Emissions. Water Air Soil Pollut 226, 343 (2015). https://doi.org/10.1007/s11270-015-2576-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-015-2576-2

Keywords

Navigation