Skip to main content

Advertisement

Log in

Sorption of Atrazine, 17α-Estradiol, and Phenanthrene on Wheat Straw and Peanut Shell Biochars

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Biochars from two different feedstocks (peanut shell-PB; wheat straw-WB) were used in this study to understand the sorption mechanisms of atrazine (ATR), 17α-ethinyl estradiol (EE2), and phenanthrene (PHEN) to help minimize the bioavailability of the organic pollutants in the environment. Sorption isotherms of ATR, EE2, and PHEN by WB and PB biochars followed the Freundlich model where the sorption parameter (n) shows the trend: ATR > EE2 and PHEN, while the sorption capacity (log K oc ) increases from ATR < EE2 < PHEN and indicate that the most hydrophobic and planar organic pollutant (PHEN) is the most easily adsorbed organic compound on PB and WB. The higher H/C and (O + N)/C ratios of WB (0.099 and 0.525, respectively) suggest its stronger aliphaticity and polarity than PB (0.078 and 0.352, respectively) that induced stronger sorption affinity for ATR and PHEN. Higher specific surface area (m2 g−1) of PB (19.7) may be responsible for the higher sorption capacity for EE2 than WB (8.8) because it can accommodate the large molecule of EE2. Results from this study may be helpful to predict the bioavailability of organic pollutants when soils contaminated with pollutants are remediated with biochars produced from wheat straw and peanut shells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ahmad, M., Lee, S. S., Dou, X., Mohan, D., Sung, J., Yang  J. E., OK, Y. S. (2012). Effects of pyrolysis temperature on soybean stover- and peanut shell-derived biochar properties and TCE adsorption in water. Bioresource Technology, 118, 536–544.

  • Ahmad, M., Rajapaksha, A. U., Lim, J. E., Zhang, M., Bolan, N., Mohan, D., Vithanage, M., Lee, S. S., & Ok, Y. S. (2014). Biochar as a sorbent for contaminant management in soil and water: A review. Chemosphere, 99, 19–33.

    Article  CAS  Google Scholar 

  • Bartholow, M. (2011). Top 200 Drugs of 2010. http://www.pharmacytimes.com/publications/issue/2011/may2011/top-200-drugs-of-2010.

  • Beesley, L., Moreno-Jiménez, E., Gomez-Eyles, J. L., Harris, E., Robinson, B., & Sizmur, T. (2011). A review of biochars’ potential role in the remediation, revegetation and restoration of contaminated soils. Envrionmental Polluttion, 159, 3269–3282.

    Article  CAS  Google Scholar 

  • Boehm, H. P. (1994). Some aspects of the surface chemistry of carbon blacks and other carbons. Carbon, 32(5), 759–769.

    Article  CAS  Google Scholar 

  • Bucheli, T. D., & Gustafsson, O. (2000). Quantification of the soot-water distribution coefficient of PAHs provides mechanistic basis for enhanced sorption observations. Environmental Science & Technology, 34, 5144–5151.

    Article  CAS  Google Scholar 

  • Cao, X., Ma, L., Gao, B., & Harris, W. (2009). Dairy-manure derived biochar effectively sorbs lead and atrazine. Environmental Science & Technology, 43, 3285–3291.

    Article  CAS  Google Scholar 

  • Chen, B.-L., & Chen, Z.-M. (2009). Sorption of naphthalene and 1-naphthol by biochars of orange peels with different pyrolytic temperatures. Chemosphere, 76, 127–133.

    Article  CAS  Google Scholar 

  • Chen, B.-L., Zhou, D.-D., & Zhu, L.-Z. (2008). Transitional adsorption and partition of nonpolar and polar aromatic contaminants by biochars of pine needles with different pyrolytic temperatures. Environmental Science & Technology, 42, 5137–5143.

    Article  CAS  Google Scholar 

  • Chen, Z.-M., Chen, B.-L., & Chiou, C.-T. (2012). Fast and slow rates of naphthalene sorption to biochars produced at different temperatures. Environmental Science & Technology, 46(20), 11104–11111.

    Article  CAS  Google Scholar 

  • Chen, C.-P., Zhou, W.-J., & Lin, D.-H. (2015). Sorption characteristics of N-nitrosodimethylamine onto biochar from aqueous solution. Bioresource Technology, 179, 359–366.

    Article  CAS  Google Scholar 

  • Chun, Y., Sheng, G.-Y., Chiou, C.-T., & Xing, B.-S. (2004). Compositions and sorptive properties of crop residue-derived chars. Environmental Science & Technology, 38, 4649–4655.

    Article  CAS  Google Scholar 

  • Cornelissen, G., & Gustafsson, O. (2004). Sorption of phenanthrene to environmental black carbon in sediment with and without organic matter and native sorbates. Environmental Science & Technology, 38(1), 148–155.

    Article  CAS  Google Scholar 

  • Cornelissen, G., Haftke, J., Parsons, J., & Gustafsson, O. (2005). Sorption to black carbon of organic compounds with varying polarity and planarity. Environmental Science & Technology, 39, 3688–3694.

    Article  CAS  Google Scholar 

  • Fernandes, M. B., Skjemstad, J. O., Johnson, B. B., Wells, J. D., & Brooks, P. (2003). Characterization of carbonaceous combustion residues. I. Morphological, elemental and spectroscopic features. Chemosphere, 51, 785–795.

    Article  CAS  Google Scholar 

  • Frisch, M. J., Trucks, G. W., Schlegel, H. B., et al. (2009). Gaussian 09, Revision A.01. Gaussian, Inc., Wallingford CT.

  • Goertzen, S. L., Theriault, K. D., Oickle, A. M., Tarasuk, A. C., & Andreas, H. A. (2010). Standardization of the Boehm titration. Part I. CO2 expulsion and endpoint determination. Carbon, 48, 1252–1261.

    Article  CAS  Google Scholar 

  • Guo, X., Tian, B., & Xin, L. (2013). Adsorption removal process and mechanism of diclofenac. Chinese Journal of Environmental Engineering, 7(10), 3779–3784.

    CAS  Google Scholar 

  • Han, J., Qiu, W., Cao, Z., Hu, J.-Y., & Gao, W. (2013). Adsorption of ethinylestradiol (EE2) on polyamide 612: Molecular modeling and effects of water chemistry. Water Research, 47, 2273–2284.

    Article  CAS  Google Scholar 

  • Kasozi, G. N., Zimmerman, A. R., Nkedi-Kizza, P., & Gao, B. (2010). Catechol and humic acid sorption onto a range of laboratory-produced black carbons (biochars). Environmental Science & Technology, 44, 6189–6195.

    Article  CAS  Google Scholar 

  • Keiluweit, M., Nico, P. S., Johnson, M. G., & Kleber, M. (2010). Dynamic molecular structure of plant biomass-derived black carbon (biochar). Environmental Science & Technology, 44, 1247–1253.

    Article  CAS  Google Scholar 

  • Kulikova, N. A., & Perminova, I. V. (2002). Binding of atrazine to humic substances from soil, peat, and coal related to their structure. Environmental Science & Technology, 36, 3720–3724.

    Article  CAS  Google Scholar 

  • Kumari, K. G. I. D., Moldrup, P., Paradelo, M., & Jonge De, L. W. (2014). Phenanthrene sorption on biochar-amended soils: Application rate, aging, and physicochemical properties of soil. Water, Air, and Soil Pollution, 9(225), 2105.

    Article  CAS  Google Scholar 

  • Lehmann, J., Gaunt, J., & Rondon, M. (2006). Biochar sequestration in terrestrial ecosystems: A review. Mitig Adapt Strategy Global Change, 11, 403–427.

    Article  Google Scholar 

  • Li, J., Jiang, L., Xiang, X., Xu, S., Wen, R., & Liu, X. (2013). Competitive sorption between 17α-ethinyl estradiol and bisphenol A /4-n-nonylphenol by soils. Journal of Environmental Science, 25(6), 1154–1163.

    Article  CAS  Google Scholar 

  • Lian, F., Huang, F., Chen, W., Xing, B.-S., & Zhu, L.-Y. (2011). Sorption of apolar and polar organic contaminants by waste tire rubber and its chars in single- and bi-solute systems. Envrionmental Pollution, 159, 850–857.

    Article  CAS  Google Scholar 

  • Lian, F., Sun, B.-B., Song, Z.-G., Zhu, L.-Y., Qi, X.-H., & Xing, B.-S. (2014). Physicochemical properties of herb-residue biochar and its sorption to ionizable antibiotic sulfamethoxazole. Chemical Engineering Journal, 248, 128–134.

    Article  CAS  Google Scholar 

  • Lin, D.-H., Pan, B., Zhu, L.-Z., & Xing, B.-S. (2007). Characterization and phenanthrene sorption of tea leaf powders. Journal of Agricultural Food and Chemistry, 55, 5718–5724.

    Article  CAS  Google Scholar 

  • Ling, W. (2005). The influence of dissolved organic matter on atrazine sorption and desoption by soils and minerals. Zhejiang University Ph.D. Thesis.

  • Liu, Y.-X. (2011). Effect of biochar on the characteristic of nitrogen loss and green gas emission from soil. Zhejiang University Ph.D. thesis.

  • Lou, L.-P., Wu, B.-B., Wang, L.-N., Luo, L., Xu, X.-H., Xun, B., & Chen, Y. X. (2011). Sorption and ecotoxicity of pentachlorophenol polluted sediment amended with rice-straw derived biochar. Bioresource Technology, 102, 4036–4041.

    Article  CAS  Google Scholar 

  • Mankasingh, U., Choi, P. C., & Ragnarsdottir, V. (2011). Biochar application in a tropical, agricultural region: A plot scale study in Tamil Nadu, India. Applied Geochemistry, 26, S218–S221.

    Article  CAS  Google Scholar 

  • Mukome, F, N. D., Zhang, X., Silva, L. C. R., Six, J., & Parikh, S. J. (2013) Use of chemical and physical characteristics to investigate trends in biochar feedstock. Agricultural and Food Chemistry, 61, 2196–2204.

  • Oh, S. Y., & Seo, Y. D. (2015). Sorption of halogenated phenols and pharmaceuticals to biochar: affecting factors and mechanisms. Environmental Science and Pollution Research International, 18. doi:10.1007/s11356-015-4201-8.

  • Park, J., Huang, I., Gan, Z., Rojas, O. J., Lim, K.-H., & Park, S. (2013). Activated carbon from biochar: Influence of its physicochemical properties on the sorption characteristics of phenanthrene. Bioresource Technology, 149, 383–389.

    Article  CAS  Google Scholar 

  • Qiu, Y. P., Xiao, X. Y., Cheng, H. Y., Zhou, Z. L., & Sheng, G. D. (2009). Influence of environmental factors on pesticide adsorption by black carbon: pH and model dissolved organic matter. Environmental Science & Technology, 43, 4973–4978.

    Article  CAS  Google Scholar 

  • Ran, Y., Sun, K., Yang, Y., Xing, B.-S., & Zeng, E. (2007). Strong sorption of phenanthrene by condensed organic matter in soils and sediments. Environmental Science & Technology, 41, 3952–3958.

    Article  CAS  Google Scholar 

  • Senesi, N. (1992). Binding mechanisms of pesticides to soil humic substances. The Science of the Total Environment, 123(124), 63–76.

    Article  Google Scholar 

  • Shechter, M., & Chefetz, B. (2008). Insights into the sorption properties of cutin and cutan biopolymers. Environmental Science & Technology, 42, 1165–1171.

    Article  CAS  Google Scholar 

  • Spokas, K. A., Koskenen, W. C., Baker, J. M., & Reicosky, D. C. (2009). Impacts of woodchip biochar additions on greenhouse gas production and sorption/degradation of two herbicides in a Minnesota soil. Chemosphere, 77, 574–581.

    Article  CAS  Google Scholar 

  • Sun, X.-S., Peng, P.-A., Song, J.-Z., Zhang, G., & Hu, J.-F. (2008). Sedimentary record of black carbon in the Pearl River estuary and adjacent northern South China Sea. Applied Geochemistry, 23, 3464–3472.

    Article  CAS  Google Scholar 

  • Sun, K., Gao, B., Zhang, Z.-Y., Zhang, G.-X., Zhao, Y., & Xing, B.-S. (2010). Sorption of atrazine and phenanthrene by organic matter fractions in soil and sediment. Environmental Pollution, 158(12), 3520–3526.

    Article  CAS  Google Scholar 

  • Sun, K., Ro, K., Guo, M., Novak, J., Mashayekhi, H., & Xing, B.-S. (2011a). Sorption of bisphenol A, 17α-ethinyl estradiol and phenanthrene on thermally and hydrothermally produced biochars. Bioresource Technology, 102, 5757–5763.

    Article  CAS  Google Scholar 

  • Sun, K., Keiluweit, M., Kleber, M., Pan, Z.-Z., & Xing, B.-S. (2011b). Sorption of fluorinated herbicides to plant biomass-derived biochars as a function of molecular structure. Bioresource Technology, 102, 9897–9903.

    Article  CAS  Google Scholar 

  • Sun, K., Jin, J., Gao, B., Zhang, Z.-Y., Wang, Z., Pan, Z.-Z., Xu, D., & Zhao, Y. (2012a). Sorption of 17α-ethinyl estradiol, bisphenol A and phenanthrene to different size fractions of soil and sediment. Chemosphere, 88, 577–583.

    Article  CAS  Google Scholar 

  • Sun, K., Jin, J., Keiluweit, M., Kleber, M., Wang, Z.-Z., Pan, Z.-Z., & Xing, B.-S. (2012b). Polar and aliphatic domains regulate sorption of phthalic acid esters (PAEs). Bioresource Technology, 118, 120–127.

    Article  CAS  Google Scholar 

  • Sun, K., Kang, M.-J., Zhang, Z.-Z., Jin, J., Wang, Z.-Y., Pan, Z.-Z., Xu, D., Wu, F., & Xing, B.-S. (2013). Impact of deashing treatment on biochar structural properties and potential sorption mechanisms of phenanthrene. Environmental Science & Technology, 47, 11473–11481.

    Article  CAS  Google Scholar 

  • Trigo, C., Spokas, K. A., Cox, L., & Koskinen, W. C. (2014). Influence of soil biochar aging on sorption of the herbicides MCPA, nicosulfuron, terbuthylazine, indaziflam, and fluoroethyldiaminotriazine. Journal of Agricultural and Food Chemistry, 62, 10855–10860.

    Article  CAS  Google Scholar 

  • Tsui, L., & Roy, W. R. (2008). The potential applications of using compost chars for removing the hydrophobic herbicide atrazine from solution. Bioresource Technology, 99, 5673–5678.

    Article  CAS  Google Scholar 

  • Uchimiya, M., Wartelle, L. H., Lima, I. M., & Klasson, K. T. (2010). Sorption of deisopropylatrazine on broiler litter biochars. Journal of Agricultural and Food Chemistry, 58, 12350–12356.

    Article  CAS  Google Scholar 

  • Van Krevelen, D. W. (1950). Graphical-statistical method for the study of structure and reaction processes of coal. Fuel, 29, 269–284.

    Google Scholar 

  • Wang, P., & Keller, A. A. (2009). Sorption and desorption of atrazine and diuron onto water dispersible soil primary size fractions. Water Resources, 43, 1448–1456.

    CAS  Google Scholar 

  • Wang, X. L., Guo, X. Y., Yang, Y., Tao, S., & Xing, B. S. (2011). Sorption mechanisms of phenanthrene, lindane, and atrazine with various humic acid fractions from a single soil sample. Environmental Science & Technology, 45(6), 2124–2130.

    Article  CAS  Google Scholar 

  • Wu, Z., Rodgers, R. P., & Marshall, A. G. (2004). Two- and three-dimensional van Krevelen diagrams: A graphical analysis complementary to the Kendrick mass plot for sorting elemental compositions of complex organic mixtures based on ultrahigh-resolution broadband Fourier transform ion cyclotron resonance mass measurements. Analytical Chemistry, 76(9), 2511–2516.

    Article  CAS  Google Scholar 

  • Xu, T., Lou, L.-P., Luo, L., Cao, R.-K., Duan, D.-C., & Chen, Y.-X. (2012). Effect of bamboo biochar on pentachlorophenol leachability and bioavailability in agricultural soil. The Science of the Total Environment, 414, 727–731.

    Article  CAS  Google Scholar 

  • Yadav, A. B. (2007). Approaches to mitigate the impact of dissolved organic matter on the adsorption of synthetic organic contaminants by activated carbon. A Thesis Presented to the Graduate School of Clemson University.

  • Yu, Z.-Q., Xiao, B.-H., Huang, W.-L., & Peng, P.-A. (2004). Sorption of steroid estrogens to soils and sediments. Environmental Toxicology and Chemistry, 23, 531–539.

    Article  CAS  Google Scholar 

  • Yu, Z.-Q., Sharma, S., & Huang, W.-L. (2006). Differential roles of humic acid and particulate organic matter in the equilibrium sorption of atrazine by soils. Environmental Toxicology and Chemistry, 25(8), 1975–1983.

    Article  CAS  Google Scholar 

  • Zheng, W., Guo, M.-X., Chow, T., Bennett, D. N., & Rajagopalan, N. (2010). Sorption properties of greenwaste biochar for two triazine pesticides. Journal of Hazardous Materials, 181, 121–126.

    Article  CAS  Google Scholar 

  • Zhou, D.-D. (2008). Sorption characteristics and mechanisms of biochars with organic contaminants in water. Zhejiang University Master degree thesis.

  • Zhu, D., Hyun, D., Pignaello, J. J., & Lee, L.-S. (2004). Evidence for π-πelectron donor acceptor interactions between π-donor aromatic compounds and π-acceptor sites in soil organic matter through pH effects on sorption. Environmental Science & Technology, 38, 4361–4368.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the Zhejiang Natural Science Foundation (ZJNSF, Project No.LY14D030001). The authors thank Qiang Huang and all other laboratory and support personnel who helped with this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiangmin Zhou.

Ethics declarations

Conflict of Interest

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, J., Chen, H., Huang, W. et al. Sorption of Atrazine, 17α-Estradiol, and Phenanthrene on Wheat Straw and Peanut Shell Biochars. Water Air Soil Pollut 227, 7 (2016). https://doi.org/10.1007/s11270-015-2699-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-015-2699-5

Keywords

Navigation