Skip to main content
Log in

Degradation of Bisphenol A Using Ozone/Persulfate Process: Kinetics and Mechanism

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Advanced oxidation of bisphenol A (BPA) in aqueous system by O3/Na2S2O8 was investigated, the degradation of BPA was affected by ozone concentration, persulfate dosages, initial pH, and BPA concentration. Experimental results indicated that the degradation of BPA was proved to follow the pseudo-first order kinetics model and was enhanced with the increase of O3 concentration and the decrease of initial BPA concentration. pH played a significant role in the BPA removal especially under the alkaline condition. Free radical species in the O3/Na2S2O8 system were identified by using tertiary butyl alcohol (TBA) and ethanol (ETOH) as two probes, the results found that the major free radical was SO4 · at acidic condition (pH = 3), and the concentration of ·OH increased with the pH increased. Eight products were detected during the reaction according to liquid chromatograph-mass spectrometry analysis. Most of the intermediates contained quinonoid derivatives, carboxylic acid, and the relevant mechanism for BPA degradation by O3/Na2S2O8 system were proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abu Amr, S. S., Aziz, H. A., & Adlan, M. N. (2013). Optimization of stabilized leachate treatment using ozone/persulfate in the advanced oxidation process. Waste Management, 33(6), 1434–1441.

    Article  CAS  Google Scholar 

  • Amr, S. S. A., Aziz, H. A., Adlan, M. N., & Alkasseh, J. M. A. (2014). Effect of ozone and ozone/persulfate processes on biodegradable and soluble characteristics of semiaerobic stabilized leachate. Environmental Progress & Sustainable Energy, 33(1), 184–191.

    Article  Google Scholar 

  • Braga, O., Smythe, G. A., Schafer, A. I., & Feitz, A. J. (2005). Fate of steroid estrogens in Australian inland and coastal wastewater treatment plants. Environmental Science & Technology, 39(9), 3351–3358.

    Article  CAS  Google Scholar 

  • Chang, H. S., Choo, K. H., Lee, B., & Choi, S. J. (2009). The methods of identification, analysis, and removal of endocrine disrupting compounds (EDCs) in water. Journal of Hazardous Materials, 172(1), 1–12.

    Article  CAS  Google Scholar 

  • De Laat, J., & Le, T. G. (2005). Kinetics and modeling of the Fe(III)/H2O2 system in the presence of sulfate in acidic aqueous solutions. Environmental Science & Technology, 39(6), 1811–1818.

    Article  Google Scholar 

  • Furman, O. S., Teel, A. L., & Watts, R. J. (2010). Mechanism of base activation of persulfate. Environmental Science & Technology, 44(16), 6423–6428.

    Article  CAS  Google Scholar 

  • Gao, Y. Q., Gao, N. Y., Deng, Y., Yang, Y. Q., & Ma, Y. (2012). Ultraviolet (UV) light-activated persulfate oxidation of sulfamethazine in water. Chemical Engineering Journal, 195, 248–253.

    Article  Google Scholar 

  • Garoma, T., & Matsumoto, S. (2009). Ozonation of aqueous solution containing bisphenol A: effect of operational parameters. Journal of Hazardous Materials, 167(1–3), 1185–1191.

    Article  CAS  Google Scholar 

  • Guo, C., Ge, M., Liu, L., Gao, G., Feng, Y., & Wang, Y. (2010). Directed synthesis of mesoporousTiO2 microspheres: catalysts and their photocatalysis for bisphenol A degradation. Environmental Science & Technology, 44, 419–425.

    Article  CAS  Google Scholar 

  • Janzen, E. G., Kotake, Y., & Hinton, R. D. (1992). Stabilities of hydroxyl radical spin adducts of PBN-type spin traps. Free Radical Biology and Medicine, 12(2), 169–173.

    Article  CAS  Google Scholar 

  • Katsumata, H., Kawabe, S., Kaneco, S., Suzuki, T., & Ohta, K. (2004). Degradation of bisphenol A in water by the photo-Fenton reaction. Journal of Photochemistry and Photobiology A: Chemistry, 162(2–3), 297–305.

    Article  CAS  Google Scholar 

  • Keykavoos, R., Mankidy, R., Ma, H., Jones, P., & Soltan, J. (2013). Mineralization of bisphenol A by catalytic ozonation over alumina. Separation and Purification Technology, 107, 310–317.

    Article  CAS  Google Scholar 

  • Kolthoff, M., & Miller, K. (1951). The kinetics and mechanism of the decomposition of the persulfate ion in aqueous medium. Journal of the American Chemical Society, 73(7), 3055–3059.

    Article  CAS  Google Scholar 

  • Kondrakov, A. O., Ignatev, A. N., Frimmel, F. H., Brase, S., Horn, H., & Revelsky, A. I. (2014). Formation of genotoxic quinones during bisphenol A degradation by TiO2 photocatalysis and UV photolysis: a comparative study. Applied Catalysis B:Environmental, 160, 106–114.

    Article  Google Scholar 

  • Lau, T. K., Chu, W., & Graham, N. J. D. (2007). The aqueous degradation of butylated hydroxyanisole by UV/S2O82-: study of reaction mechanisms via dimerization and mineralization. Environmental Science & Technology, 41(2), 613–619.

    Article  CAS  Google Scholar 

  • Liang, C. J., Bruell, C. J., Marley, M. C., & Sperry, K. L. (2004). Persulfate oxidation for in situ remediation of TCE. I. Activated by ferrous ion with and without a persulfate-thiosulfate redox couple. Chemosphere, 55(9), 1213–1223.

    Article  CAS  Google Scholar 

  • McCallum, J. E. B., Madison, S. A., Alkan, S., Depinto, R. L., & Wahl, R. U. R. (2000). Analytical studies on the oxidative degradation of the reactive textile dye Uniblue A. Environmental Science & Technology, 34(24), 5157–5164.

    Article  CAS  Google Scholar 

  • McElroy, W. J., & Waygood, S. J. (1990). Kinetics of the reactions of the SO4- radical with SO4-, S2O82-, H2O and Fe2+. Journal of the Chemical Society, Faraday Transactions, 86(14), 2557–2564.

    Article  CAS  Google Scholar 

  • Olmez-Hanci, T., Arslan-Alaton, I., & Genc, B. (2013). Bisphenol A treatment by the hot persulfate process: oxidation products and acute toxicity. Journal of Hazardous Materials, 263, 283–290.

    Article  CAS  Google Scholar 

  • Peller, J. R., Mezyk, S. P., & Cooper, W. J. (2009). Bisphenol A reactions with hydroxyl radicals: diverse pathways determined between deionized water and tertiary treated wastewater solutions. Research on Chemical Intermediates, 35(1), 21–34.

    Article  CAS  Google Scholar 

  • Poerschmann, J., Trommler, U., & Gorecki, T. (2010). Aromatic intermediate formation during oxidative degradation of Bisphenol A by homogeneous sub-stoichiometric Fenton reaction. Chemosphere, 79(10), 975–986.

    Article  CAS  Google Scholar 

  • Rosenfeldt, E. J., & Linden, K. G. (2004). Degradation of endocrine disrupting chemicals bisphenol A, ethinyl estradiol, and estradiol during UV photolysis and advanced oxidation processes. Environmental Science & Technology, 38(20), 5476–5483.

    Article  CAS  Google Scholar 

  • Tizaoui, C., Bouselmi, L., Mansouri, L., & Ghrabi, A. (2007). Landfill leachate treatment with ozone and ozone/hydrogen peroxide systems. Journal of Hazardous Materials, 140(1–2), 316–324.

    Article  CAS  Google Scholar 

  • Torres, R. A., Abdelmalek, F., Combet, E., Petrier, C., & Pulgarin, C. (2007). A comparative study of ultrasonic cavitation and Fenton’s reagent for bisphenol A degradation in deionised and natural waters. Journal of Hazardous Materials, 146(3), 546–551.

    Article  CAS  Google Scholar 

  • Torres, R. A., Nieto, J. I., Combet, E., Petrier, C., & Pulgarin, C. (2008). Influence of TiO2 concentration on the synergistic effect between photocatalysis and high-frequency ultrasound for organic pollutant mineralization in water. Applied Catalysis B:Environmental, 80(1–2), 168–175.

    Article  CAS  Google Scholar 

  • Von Gunten, U. (2003). Ozonation of drinking water: Part I. Oxidation kinetics and product formation. Water Research, 37(7), 1443–1467.

    Article  Google Scholar 

  • Wen, G., Ma, J., Liu, Z. Q., & Zhao, L. (2011). Ozonation kinetics for the degradation of phthalate esters in water and the reduction of toxicity in the process of O3/H2O2. Journal of Hazardous Materials, 195, 371–377.

    Article  CAS  Google Scholar 

  • Yamamoto, T., & Yasuhara, A. (1999). Quantities of bisphenol A leached from plastic waste samples. Chemosphere, 38(11), 2569–2576.

    Article  CAS  Google Scholar 

  • Yao, C. C. D., & Haag, W. R. (1991). Rate constants for direct reactions of ozone with several drinking-water contaminants. Water Research, 25(7), 761–773.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by National Natural Science Foundation of China (NO. 51508354), Sichuan Provincial Environmental Protection Office (NO. 2013HB08), and Science Foundation for The Excellent Youth Scholars of Sichuan University (NO. 2082604174048). The authors are thankful to all the anonymous reviewers for their insightful comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongguang Guo.

Ethics declarations

Conflict of Interest

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Y., Guo, H., Zhang, Y. et al. Degradation of Bisphenol A Using Ozone/Persulfate Process: Kinetics and Mechanism. Water Air Soil Pollut 227, 53 (2016). https://doi.org/10.1007/s11270-016-2746-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-016-2746-x

Keywords

Navigation