Skip to main content
Log in

Copper(II) and Phenol Adsorption by Cell Surface Treated Candida tropicalis Cells in Aqueous Suspension

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

An experimental study was performed to determine the feasibility of using physically treated Candida tropicalis cells for sorption of Cu(II) and phenol, the role of competition between phenol molecules and Cu(II). The yeast cells were lyophilized (LC), heat-treated at 65 °C for 24 h (HT1), at 90 °C for 24 h (HT2), and 72 h (HT3), inactivated at 120 °C and 104 kPa for 20 min (PC). The adsorption isotherms were determined in batch system. Experimental equilibrium data were evaluated using Langmuir, Freundlich, and Dubinin–Radushkevich isotherm models by linear and non-linear regression. The adsorbed Cu(II) and phenol amounts by yeast cells were decreased due to the physical treatments of cells. With the increase of biomass dosage from 1 to 10 g L−1, the adsorption efficiency was increased. The Cu(II) adsorption capacity was also determined in the presence of phenol at various initial concentrations, and in these systems, phenol adsorption isotherms were determined. In the presence of phenol, the Cu(II) sorption capacity by lyophilized cells and carbon particles was decreased. The most commonly used sorbent in water treatment is activated carbon with large specific surface; therefore, the results were compared with the experimental data obtained by using activated carbon (AC).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

LC:

Lyophilized C. tropicalis cells

PC:

C. tropicalis cells treated in pressure cook

HT1:

C. tropicalis cells treated for 24 h, at 65 °C

HT2:

C. tropicalis cells treated for 24 h, at 90 °C

HT3:

C. tropicalis cells treated for 72 h, at 90 °C

AC:

Activated carbon

References

  • Ahmad, M., Haydar, S., & Quraishi, T. (2013). Enhancement of biosorption of zinc ions from aqueous solution by immobilized Candida utilis and Candida tropicalis cells. International Biodeterioration & Biodegradation, 83, 119–128.

    Article  CAS  Google Scholar 

  • Alluri, H., Ronda, S., Settalluri, V., Singh, J., Bondili, S., & Venkateshwar, P. (2007). Biosorption: an eco-friendly alternative for heavy metal removal. African Journal of Biotechnology, 6, 2924–2931.

    CAS  Google Scholar 

  • Brierley, C. (1990). Bioremediation of metal-contaminated surface and groundwaters. Geomicrobiology Journal, 8, 201–223.

    Article  CAS  Google Scholar 

  • Busca, G., Berardinelli, S., Resini, C., & Arrighi, L. (2008). Technologies for the removal of phenol from fluid streams: a short review of recent developments. Journal of Hazardous Materials, 160, 265–288.

    Article  CAS  Google Scholar 

  • Cervantes, C., & Gutierrezcorona, F. (1994). Copper resistance mechanisms in bacteria and fungi. FEMS Microbiology Reviews, 14, 121–137.

    Article  CAS  Google Scholar 

  • Chandran, P., & Das, N. (2011). Degradation of diesel oil by immobilized Candida tropicalis and biofilm formed on gravels. Biodegradation, 22, 1181–1189.

    Article  CAS  Google Scholar 

  • Chen, J., Chen, W., & Hsu, R. (1996). Biosorption of copper from aqueous solutions by plant root tissues. Journal of Fermentation and Bioengineering, 81, 458–463.

    Article  CAS  Google Scholar 

  • Dang, V., Doan, H., Dang-Vu, T., & Lohi, A. (2009). Equilibrium and kinetics of biosorption of cadmium(II) and copper(II) ions by wheat straw. Bioresource Technology, 100, 211–219.

    Article  CAS  Google Scholar 

  • Deng, P., Liu, W., Zeng, B., Qiu, Y., & Li, L. (2013). Sorption of heavy metals from aqueous solution by dehydrated powders of aquatic plants. International Journal of Environmental Science and Technology, 10, 559–566.

    Article  CAS  Google Scholar 

  • Edding, M., & Tala, F. (1996). Copper transfer and influence on a marine food chain. Bulletin of Environmental Contamination and Toxicology, 57, 617–624.

    Article  CAS  Google Scholar 

  • El-Sikaily, A., El Nemr, A., & Khaled, A. (2011). Copper sorption onto dried red alga Pterocladia capillacea and its activated carbon. Chemical Engineering Journal, 168, 707–714.

    Article  CAS  Google Scholar 

  • Fagundes-Klen, M., Veit, M., Borba, C., Bergamasco, R., Vaz, L., & da Silva, E. (2010). Copper biosorption by biomass of marine alga: study of equilibrium and kinetics in batch system and adsorption/desorption cycles in fixed bed column. Water, Air, and Soil Pollution, 213, 15–26.

    Article  CAS  Google Scholar 

  • Farkas, V., Felinger, A., Hegedusova, A., Dekany, I., & Pernyeszi, T. (2013). Comparative study of the kinetics and equilibrium of phenol biosorption on immobilized white-rot fungus Phanerochaete chrysosporium from aqueous solution. Colloids and Surfaces B, Biointerfaces, 103, 381–390.

    Article  CAS  Google Scholar 

  • Febrianto, J., Kosasih, A., Sunarso, J., Ju, Y., Indraswati, N., & Ismadji, S. (2009). Equilibrium and kinetic studies in adsorption of heavy metals using biosorbent: a summary of recent studies. Journal of Hazardous Materials, 162, 616–645.

    Article  CAS  Google Scholar 

  • Foo, K., & Hameed, B. (2010). Insights into the modeling of adsorption isotherm systems. Chemical Engineering Journal, 156, 2–10.

    Article  CAS  Google Scholar 

  • Hansen, H., Arancibia, F., & Gutierrez, C. (2010). Adsorption of copper onto agriculture waste materials. Journal of Hazardous Materials, 180, 442–448.

    Article  CAS  Google Scholar 

  • Harrison, F., & Katti, S. (1990). Hazards of linearization of Langmuir’s model. Chemometrics and Intelligent Laboratory Systems, 9, 249–255.

    Article  Google Scholar 

  • Jia, X., Wen, J., Ji, T., & Jiang, Y. (2011). Modelling of phenol biodegradation by Candida tropicalis immobilised in alginate gel beads. Canadian Journal of Chemical Engineering, 89, 1566–1574.

    Article  CAS  Google Scholar 

  • Jiang, Y., Wen, J., Li, H., Yang, S., & Hu, Z. (2005). The biodegradation of phenol at high initial concentration by the yeast Candida tropicalis. Biochemical Engineering Journal, 24, 243–247.

    Article  CAS  Google Scholar 

  • Jiang, Y., Wen, J., Lan, L., & Hu, Z. (2007). Biodegradation of phenol and 4-chlorophenol by the yeast Candida tropicalis. Biodegradation, 18, 719–729.

    Article  CAS  Google Scholar 

  • Jiang, Y., Cai, X., Wu, D., & Ren, N. (2010). Biodegradation of phenol and m-cresol by mutated Candida tropicalis. Journal of Environmental Sciences-China, 22, 621–626.

    Article  CAS  Google Scholar 

  • Junghans, K., & Straube, G. (1991). Biosorption of copper by yeasts. Biology of Metals, 4, 233–237.

    Article  CAS  Google Scholar 

  • Kim, B., Gee, C., Bandy, J., Huang, C., & Guzewich, D. (1990). Hazardous wastes treatment technologies. Research Journal of the Water Pollution Control Federation, 62, 511–519.

    CAS  Google Scholar 

  • Koyuncu, H., Yildiz, N., Salgin, U., Koroglu, F., & Calimli, A. (2011). Adsorption of o-, m- and p-nitrophenols onto organically modified bentonites. Journal of Hazardous Materials, 185, 1332–1339.

    Article  CAS  Google Scholar 

  • Mantovi, P., Bonazzi, G., Maestri, E., & Marmiroli, N. (2003). Accumulation of copper and zinc from liquid manure in agricultural soils and crop plants. Plant and Soil, 250, 249–257.

    Article  CAS  Google Scholar 

  • Miranda, C., & Rojas, R. (2006). Copper accumulation by bacteria and transfer to scallop larvae. Marine Pollution Bulletin, 52, 293–300.

    Article  CAS  Google Scholar 

  • Nica, D., Bura, M., Gergen, I., Harmanescu, M., & Bordean, D. (2012). Bioaccumulative and conchological assessment of heavy metal transfer in a soil-plant-snail food chain. Chemistry Central Journal, 6.

  • Olexsey, R. (1986). Treatment technologies for hazardous wastes. Journal of the Air Pollution Control Association, 36, 66.

    Article  Google Scholar 

  • Pamukoglu, M., & Kargi, F. (2009). Removal of Cu(II) ions by biosorption onto powdered waste sludge (PWS) prior to biological treatment in an activated sludge unit: a statistical design approach. Bioresource Technology, 100, 2348–2354.

    Article  CAS  Google Scholar 

  • Rehman, A., & Anjum, M. S. (2010). Cadmium uptake by yeast, Candida tropicalis, isolated from industrial effluents and its potential use in wastewater clean-up operations. Water, Air, and Soil Pollution, 205, 149–159.

    Article  CAS  Google Scholar 

  • Rehman, A., & Anjum, M. (2011). Multiple metal tolerance and biosorption of cadmium by Candida tropicalis isolated from industrial effluents: glutathione as detoxifying agent. Environmental Monitoring and Assessment, 174, 585–595.

    Article  CAS  Google Scholar 

  • Rehman, A., Farooq, H., & Shakoori, A. (2007). Copper tolerant yeast, Candida tropicalis, isolated from industrial effluents: its potential use in wastewater treatment. Pakistan Journal of Zoology, 39, 405–412.

    CAS  Google Scholar 

  • Rehman, A., Anjum, M., & Hasnain, S. (2010). Cadmium biosorption by yeast, Candida tropicalis CBL-1, isolated from industrial wastewater. Journal of General and Applied Microbiology, 56, 359–368.

    Article  CAS  Google Scholar 

  • Tsekova, K., Ganeva, S., Hristov, A., Todorova, D., & Beschkov, V. (2011). Simultaneous copper, cobalt and phenol removal from aqueous solutions by alternating biosorption and biodegradation. Water Science and Technology, 63, 2388–2394.

    Article  CAS  Google Scholar 

  • Varma, R., & Gaikwad, B. (2008). Rapid and high biodegradation of phenols catalyzed by Candida tropicalis NCIM 3556 cells. Enzyme and Microbial Technology, 43, 431–435.

    Article  CAS  Google Scholar 

  • Varma, R., & Gaikwad, B. (2009). Biodegradation and phenol tolerance by recycled cells of Candida tropicalis NCIM 3556. International Biodeterioration & Biodegradation, 63, 539–542.

    Article  CAS  Google Scholar 

  • Veglio, F., & Beolchini, F. (1997). Removal of metals by biosorption: a review. Hydrometallurgy, 44, 301–316.

    Article  CAS  Google Scholar 

  • Veneu, D., Torem, M., & Pino, G. (2013). Fundamental aspects of copper and zinc removal from aqueous solutions using a Streptomyces lunalinharesii strain. Minerals Engineering, 48, 44–50.

    Article  CAS  Google Scholar 

  • Vijayaraghavan, K., Padmesh, T., Palanivelu, K., & Velan, M. (2006). Biosorption of nickel(II) ions onto Sargassum wightii: application of two-parameter and three-parameter isotherm models. Journal of Hazardous Materials, 133, 304–308.

    Article  CAS  Google Scholar 

  • Volesky, B., & Holan, Z. (1995). Biosorption of heavy-metals. Biotechnology Progress, 11, 235–250.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Tímea Pernyeszi, Krisztina Honfi, and Ferenc Kilár gratefully acknowledge the support for this research from TAMOP-4.2.2.A11/1/KONV-2012-0065 and OTKA 10067 (Hungarian research grants).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tímea Pernyeszi.

Additional information

Highlights

• Cu(II) and phenol biosorption equilibrium by treated Candida tropicalis cells

• Single and binary biosorption systems

• Competitive biosorption study

• Equilibrium evaluation by isotherm equations using linear and non-linear regression

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Honfi, K., Tálos, K., Kőnig-Péter, A. et al. Copper(II) and Phenol Adsorption by Cell Surface Treated Candida tropicalis Cells in Aqueous Suspension. Water Air Soil Pollut 227, 61 (2016). https://doi.org/10.1007/s11270-016-2751-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-016-2751-0

Keywords

Navigation