Skip to main content

Advertisement

Log in

A Review and Evaluation of the Impacts of Climate Change on Geogenic Arsenic in Groundwater from Fractured Bedrock Aquifers

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Climate change is expected to affect the groundwater quality by altering recharge, water table elevation, groundwater flow, and land use. In fractured bedrock aquifers, the quality of groundwater is a sensitive issue, particularly in areas affected by geogenic arsenic contamination. Understanding how climate change will affect the geochemistry of naturally occurring arsenic in groundwater is crucial to ensure sustainable use of this resource, particularly as a source of drinking water. This paper presents a review of the potential impacts of climate change on arsenic concentration in bedrock aquifers and identifies issues that remain unresolved. During intense and prolonged low flow, the decline in the water table is expected to increase the oxidation of arsenic-bearing sulfides in the unsaturated zone. In addition, reduced groundwater flow may increase the occurrence of geochemically evolved arsenic-rich groundwater and enhance arsenic mobilization by reductive dissolution and alkali desorption. In contrast, the occurrence of extreme recharge events is expected to further decrease arsenic concentrations because of the greater dilution by oxygenated, low-pH water. In some cases, arsenic mobilization could be indirectly induced by climate change through changes in land use, particularly those causing increased groundwater withdrawals and pollution. The overall impact of climate change on dissolved arsenic will vary greatly according to the bedrock aquifer properties that influence the sensitivity of the groundwater system to climate change. To date, the scarcity of data related to the temporal variability of arsenic in fractured bedrock groundwater is a major obstacle in evaluating the future evolution of the resource quality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Acharyya, S. K., Shah, B. A., Ashyiya, I. D., & Pandey, Y. (2005). Arsenic contamination in groundwater from parts of Ambagarh-Chowki block, Chhattisgarh, India: source and release mechanism. Environmental Geology, 49, 148–158.

    Article  CAS  Google Scholar 

  • Ahn, J. S. (2012). Geochemical occurrences of arsenic and fluoride in bedrock groundwater: a case study in Geumsan County, Korea. Environmental Geochemistry and Health, 34, 43–54.

    Article  CAS  Google Scholar 

  • Ahn, J. S., & Cho, Y.-C. (2013). Predicting natural arsenic contamination of bedrock groundwater for a local region in Korea and its application. Environmental earth sciences, 68, 2123–2132.

    Article  CAS  Google Scholar 

  • Appelo, C. A. J., & Postma, D. (2005). Geochemistry, groundwater and pollution. A.A. Balkema Publishers.

  • Asta, M. P., Cama, J., Ayora, C., Acero, P., & de Giudici, G. (2010). Arsenopyrite dissolution rates in O2-bearing solutions. Chemical Geology, 273, 272–285.

    Article  CAS  Google Scholar 

  • Ayotte, J. D., Belaval, M., Olson, S. A., Burow, K. R., Flanagan, S. M., Hinkle, S. R., & Lindsey, B. D. (2015). Factors affecting temporal variability of arsenic in groundwater used for drinking water supply in the United States. Science of the Total Environment, 505, 1370–1379.

    Article  CAS  Google Scholar 

  • Ayotte, J. D., Montgomery, D. L., Flanagan, S. M., & Robinson, K. W. (2003). Arsenic in groundwater in eastern New England: occurrence, controls, and human health implications. Environmental science & technology, 37, 2075–2083.

    Article  CAS  Google Scholar 

  • Bhattacharya, P., Jacks, G., & von Brömssen, M. (2010). Arsenic in Swedish groundwater—mobility and risk for naturally elevated concentrations: final report, Universitetsservice AB.

    Google Scholar 

  • Bhattacharya, P., Sracek, O., Eldvall, B., Asklund, R., Barmen, G., Jacks, G., Koku, J., Gustafsson, J.-E., Singh, N., & Balfors, B. B. (2012). Hydrogeochemical study on the contamination of water resources in a part of Tarkwa mining area, Western Ghana. Journal of African Earth Sciences, 66–67, 72–84.

    Article  Google Scholar 

  • Bloomfield, J. P., Williams, R. J., Gooddy, D. C., Cape, J. N., & Guha, P. (2006). Impacts of climate change on the fate and behaviour of pesticides in surface and groundwater—a UK perspective. Science of the Total Environment, 369, 163–177.

    Article  CAS  Google Scholar 

  • Borba, R. P., Figueiredo, B. R., & Matschullat, J. (2003). Geochemical distribution of arsenic in waters, sediments and weathered gold mineralized rocks from Iron Quadrangle, Brazil. Environmental Geology, 44, 39–52.

    CAS  Google Scholar 

  • Bottomley, D. (1984). Origins of some arseniferous groundwaters in Nova Scotia and New Brunswick, Canada. Journal of Hydrology, 69, 223–257.

    Article  CAS  Google Scholar 

  • Boyle, D. R., Turner, R. J. W., & Hall, G. E. M. (1998). Anomalous arsenic concentrations in groundwaters of an island community, Bowen Island, British Columbia. Environmental Geochemistry and Health, 20, 199–212.

    Article  CAS  Google Scholar 

  • Bretzler, A., & Johnson, C. A. (2015). The geogenic contamination handbook: addressing arsenic and fluoride in drinking water. Applied Geochemistry, 63, 642–646.

    Article  CAS  Google Scholar 

  • Carneiro, J. F., Boughriba, M., Correia, A., Zarhloule, Y., Rimi, A., & El Houadi, B. (2010). Evaluation of climate change effects in a coastal aquifer in Morocco using a density-dependent numerical model. Environmental Earth Sciences, 61, 241–252.

    Article  CAS  Google Scholar 

  • Chopard, A., Benzaazoua, M., Plante, B., Bouzahzah, H., & Marion, P. (2015). Kinetic tests to evaluate the relative oxidation rates of various sulfides and sulfosalts. Santiago: ICARD2015 Proceedings.

    Google Scholar 

  • Dams, J., Salvadore, E., Van Daele, T., Ntegeka, V., Willems, P., & Batelaan, O. (2012). Spatio-temporal impact of climate change on the groundwater system. Hydrology and Earth System Sciences, 16, 1517–1531.

    Article  Google Scholar 

  • Drahota, P., & Filippi, M. (2009). Secondary arsenic minerals in the environment: a review. Environment International, 35, 1243–1255.

    Article  CAS  Google Scholar 

  • Figura, S., Livingstone, D. M., Hoehn, E., & Kipfer, R. (2011). Regime shift in groundwater temperature triggered by the Arctic Oscillation. Geophysical Research Letters, 38, L23401.

    Article  Google Scholar 

  • Foley, N. K., & Ayuso, R. A. (2008). Mineral sources and transport pathways for arsenic release in a coastal watershed, USA. Geochemistry-exploration Environment Analysis, 8, 59–75.

    Article  CAS  Google Scholar 

  • Frengstad, B., Skrede, A. K. M., Banks, D., Krog, J. R., & Siewers, U. (2000). The chemistry of Norwegian groundwaters: III. The distribution of trace elements in 476 crystalline bedrock groundwaters, as analysed by ICP-MS techniques. Science of The Total Environment, 246(1), 21–40.

    Article  CAS  Google Scholar 

  • Frost, F., Franke, D., Pierson, K., Woodruff, L., Raasina, B., Davis, R., & Davies, J. (1993). A seasonal study of arsenic in groundwater, Snohomish County, Washington, USA. Environmental geochemistry and health, 15, 209–214.

    Article  CAS  Google Scholar 

  • Grantham, D. A., & Jones, J. F. (1977). Arsenic contamination of water wells in Nova Scotia. American Water Works Association Journal, 69(12), 653–657.

    CAS  Google Scholar 

  • Green, T. R., Taniguchi, M., Kooi, H., Gurdak, J. J., Allen, D. M., Hiscock, K. M., Treidel, H., & Aureli, A. (2011). Beneath the surface of global change: impacts of climate change on groundwater. Journal of Hydrology, 405, 532–560.

    Article  Google Scholar 

  • Gurdak, J. J., McMahon, P. B., & Bruce, B. W. (2012). Vulnerability of groundwater quality to human activity and climate change and variability, High Plains aquifer, USA. In H. Treidel, J. L. Martin-Bordes, & J. J. Gurdak (Eds.), Climate change effects on groundwater resources—a global synthesis of findings and recommendations, Taylor & Francis Group (pp. 145–168).

    Google Scholar 

  • Harte, P. T., Ayotte, J. D., Hoffman, A., Revesz, K. M., Belaval, M., Lamb, S., & Boehlke, J. K. (2012). Heterogeneous redox conditions, arsenic mobility, and groundwater flow in a fractured-rock aquifer near a waste repository site in New Hampshire, USA. Hydrogeology Journal, 20, 1189–1201.

    Article  CAS  Google Scholar 

  • IPCC. (2013). Climate change 2013: the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.)], Cambridge, United Kingdom and New York, NY, USA

  • Jackson, C. R., Meister, R., & Prudhomme, C. (2011). Modelling the effects of climate change and its uncertainty on UK Chalk groundwater resources from an ensemble of global climate model projections. Journal of Hydrology, 399, 12–28.

    Article  Google Scholar 

  • Jyrkama, M. I., & Sykes, J. F. (2007). The impact of climate change on spatially varying groundwater recharge in the grand river watershed (Ontario). Journal of Hydrology, 338(3), 237–250.

    Article  Google Scholar 

  • Kim, K., Kim, S.-H., Jeong, G. Y., & Kim, R.-H. (2012). Relations of As concentrations among groundwater, soil, and bedrock in Chungnam, Korea: implications for As mobilization in groundwater according to the As-hosting mineral change. Journal of Hazardous Materials, 199, 25–35.

    Article  Google Scholar 

  • Klassen, R. A., Douma, S. L., Ford, A., Rencz, A., & Grunsky, E. (2009). Geoscience modelling of relative variation in natural arsenic hazard potential in New Brunswick: Geological Survey of Canada, Current Research 2009–7, p. 9 p.

    Book  Google Scholar 

  • Kløve, B., Ala-Aho, P., Bertrand, G., Gurdak, J. J., Kupfersberger, H., Kvaerner, J., Muotka, T., Mykrä, H., Preda, E., Rossi, P., et al. (2014). Climate change impacts on groundwater and dependent ecosystems. Journal of Hydrology, 518, 250–266.

    Article  Google Scholar 

  • Kundzewicz, Z. W., & Döll, P. (2009). Will groundwater ease freshwater stress under climate change? Hydrological Sciences Journal, 54, 665–675.

    Article  Google Scholar 

  • Kurylyk, B., Bourque, C.-A., & MacQuarrie, K. (2013). Potential surface temperature and shallow groundwater temperature response to climate change: an example from a small forested catchment in east-central New Brunswick (Canada). Hydrology and Earth System Sciences, 17, 2701–2716.

    Article  Google Scholar 

  • Lerner, D. N., & Harris, B. (2009). The relationship between land use and groundwater resources and quality. Land Use Policy, 26(Supplement 1), S265–S273.

    Article  Google Scholar 

  • Lipfert, G., Reeve, A. S., Sidle, W. C., & Marvinney, R. (2006). Geochemical patterns of arsenic-enriched ground water in fractured, crystalline bedrock, Northport, Maine, USA. Applied Geochemistry, 21, 528–545.

    Article  CAS  Google Scholar 

  • Lipfert, G., Sidle, W. C., Reeve, A. S., Ayuso, R. A., & Boyce, A. J. (2007). High arsenic concentrations and enriched sulfur and oxygen isotopes in a fractured-bedrock ground-water system. Chemical Geology, 242, 385–399.

    Article  CAS  Google Scholar 

  • Loukola-Ruskeeniemi, K., Tanskanen, H., & Lahermo, P. (1999). Anomalously high arsenic concentrations in spring waters in Kittilä, Finnish Lapland. Geological Survey of Finland, Special Paper 27, 97–102.

    Google Scholar 

  • Mango, H., & Ryan, P. (2015). Source of arsenic-bearing pyrite in southwestern Vermont, USA: sulfur isotope evidence. Science of The Total Environment, 505, 1331–1339.

    Article  CAS  Google Scholar 

  • Manning, A. H., Verplanck, P. L., Caine, J. S., & Todd, A. S. (2013). Links between climate change, water-table depth, and water chemistry in a mineralized mountain watershed. Applied Geochemistry, 37, 64–78.

    Article  CAS  Google Scholar 

  • Mast, M. A., Turk, J. T., Clow, D. W., & Campbell, D. H. (2011). Response of lake chemistry to changes in atmospheric deposition and climate in three high-elevation wilderness areas of Colorado. Biogeochemistry, 103, 27–43.

    Article  CAS  Google Scholar 

  • Meranger, J., Subramanian, K., & McCurdy, R. (1984). Arsenic in Nova Scotian groundwater. Science of the total environment, 39, 49–55.

    Article  CAS  Google Scholar 

  • Naujokas, M. F., Anderson, B., Ahsan, H., Aposhian, H. V., Graziano, J. H., Thompson, C., & Suk, W. A. (2013). The broad scope of health effects from chronic arsenic exposure: update on a worldwide public health problem. Environmental Health Perspectives, 121, 295–302.

    Article  CAS  Google Scholar 

  • Niu, B., Loaiciga, H. A., Wang, Z., Zhan, F. B., & Hong, S. (2014). Twenty years of global groundwater research: a Science Citation Index Expanded-based bibliometric survey (1993–2012). Journal of Hydrology, 519, Part A, 966–975.

    Article  Google Scholar 

  • Nordstrom, D. K. (2009). Acid rock drainage and climate change. Journal of Geochemical Exploration, 100, 97–104.

    Article  CAS  Google Scholar 

  • Nordstrom, D. K., Blowes, D. W., & Ptacek, C. J. (2015). Hydrogeochemistry and microbiology of mine drainage: an update. Applied Geochemistry, 57, 3–16.

    Article  CAS  Google Scholar 

  • O’Shea, B., Stransky, M., Leitheiser, S., Brock, P., Marvinney, R. G., & Zheng, Y. (2015). Heterogeneous arsenic enrichment in meta-sedimentary rocks in central Maine, United States. Science of The Total Environment, 505, 1308–1319.

    Article  Google Scholar 

  • Okkonen, J., Jyrkama, M., & Kløve, B. (2010). A conceptual approach for assessing the impact of climate change on groundwater and related surface waters in cold regions (Finland). Hydrogeology Journal, 18(2), 429–439.

    Article  Google Scholar 

  • Pandey, P. K., Sharma, R., Roy, M., Roy, S., & Pandey, M. (2006). Arsenic contamination in the Kanker district of central-east India: geology and health effects. Environmental Geochemistry and Health, 28, 409–420.

    Article  CAS  Google Scholar 

  • Parviainen, A., Loukola-Ruskeeniemi, K., Tarvainen, T., Hatakka, T., Härmä, P., Backman, B., Ketola, T., Kuula, P., Lehtinen, H., Sorvari, J., Pyy, O., Ruskeeniemi, T., & Luoma, S. (2015). Arsenic in bedrock, soil and groundwater—the first arsenic guidelines for aggregate production established in Finland. Earth-Science Reviews, 150, 709–723.

    Article  CAS  Google Scholar 

  • Pearce, T. D., Ford, J. D., Prno, J., Duerden, F., Pittman, J., Beaumier, M., Berrang-Ford, L., & Smit, B. (2011). Climate change and mining in Canada. Mitigation and Adaptation Strategies For Global Change, 16, 347–368.

    Article  Google Scholar 

  • Peters, S. C. (2008). Arsenic in groundwaters in the Northern Appalachian Mountain belt: a review of patterns and processes. Journal of Contaminant Hydrology, 99, 8–21.

    Article  CAS  Google Scholar 

  • Peters, S. C., & Blum, J. D. (2003). The source and transport of arsenic in a bedrock aquifer, New Hampshire, USA. Applied Geochemistry, 18, 1773–1787.

    Article  CAS  Google Scholar 

  • Pili, E., Tisserand, D., & Bureau, S. (2013). Origin, mobility, and temporal evolution of arsenic from a low-contamination catchment in Alpine crystalline rocks. Journal of Hazardous Materials, 262, 887–895.

    Article  CAS  Google Scholar 

  • Ravenscroft, P., Brammer, H., & Richards, K. (2009). Arsenic pollution: a global synthesis, Wiley-Blackwell.

    Book  Google Scholar 

  • Reyes, F. A. P., Crosta, G. B., Frattini, P., Basirico, S., & Della Pergola, R. (2015). Hydrogeochemical overview and natural arsenic occurrence in groundwater from alpine springs (upper Valtellina, Northern Italy). Journal of Hydrology, 529, 1530–1549.

    Article  Google Scholar 

  • Ruskeeniemi, T., Backman, B., Loukola-Ruskeeniemi, K., Sorvari, J., Lehtinen, H., Schultz, E., Mäkelä-Kurtto, R., Rossi, E., Vaajasaari, K., & Bilaletdin, A. (2011). Arsenic in the Pirkanmaa region, Southern Finland: from identification through to risk assessment to risk management. Geological Survey of Finland, Special Paper 49, 21–227.

    Google Scholar 

  • Ryan, P. C., Kim, J., Wall, A. J., Moen, J. C., Corenthal, L. G., Chow, D. R., Sullivan, C. M., & Bright, K. S. (2011). Ultramafic-derived arsenic in a fractured bedrock aquifer. Applied Geochemistry, 26, 444–457.

    Article  CAS  Google Scholar 

  • Ryan, P. C., Kim, J. J., Mango, H., Hattori, K., & Thompson, A. (2013). Arsenic in a fractured slate aquifer system, New England, USA: influence of bedrock geochemistry, groundwater flow paths, redox and ion exchange. Applied Geochemistry, 39, 181–192.

    Article  CAS  Google Scholar 

  • Ryan, P. C., West, D. P., Hattori, K., Studwell, S., Allen, D. N., & Kim, J. (2015). The influence of metamorphic grade on arsenic in metasedimentary bedrock aquifers: a case study from Western New England, USA. Science of the Total Environment, 505, 1320–1330.

    Article  CAS  Google Scholar 

  • Sahoo, N. R., & Pandalai, H. S. (2000). Secondary geochemical dispersion in the Precambrian auriferous Hutti-Maski schist belt, Raichur district, Karnataka, India: part I: anomalies of As, Sb, Hg and Bi in soil and groundwater. Journal of Geochemical Exploration, 71, 269–289.

    Article  CAS  Google Scholar 

  • Serpa, C., Batterson, M., & Guzzwell, K. (2009). The influence of bedrock and mineral occurrences on arsenic concentrations in groundwater wells in the Gander Bay Area, Newfoundland: current research. Newfoundland and Labrador Department of Natural Resources Geological Survey, Report 09–1, 315–337.

    Google Scholar 

  • Serrat-Capdevila, A., Valdés, J. B., Pérez, J. G., Baird, K., Mata, L. J., & Maddock, T. (2007). Modeling climate change impacts-and uncertainty-on the hydrology of a riparian system: the San Pedro Basin (Arizona/Sonora). Journal of Hydrology, 347, 48–66.

    Article  Google Scholar 

  • Sharma, V. K., & Sohn, M. (2009). Aquatic arsenic: toxicity, speciation, transformations, and remediation. Environment International, 35, 743–759.

    Article  CAS  Google Scholar 

  • Shukla, D. P., Dubey, C. S., Singh, N. P., Tajbakhsh, M., & Chaudhry, M. (2010). Sources and controls of arsenic contamination in groundwater of Rajnandgaon and Kanker District, Chattisgarh Central India. Journal of Hydrology, 395, 49–66.

    Article  CAS  Google Scholar 

  • Sidle, W. C. (2002). 18OSO4 and 18OH2O as prospective indicators of elevated arsenic in the Goose River ground-watershed, Maine. Environmental Geology, 42, 350–359.

    Article  CAS  Google Scholar 

  • Sidle, W. C., & Fischer, R. A. (2003). Detection of 3H and 85Kr in groundwater from arsenic-bearing crystalline bedrock of the Goose River basin, Maine. Environmental Geology, 44, 781–789.

    Article  CAS  Google Scholar 

  • Sidle, W. C., Wotten, B., & Murphy, E. (2001). Provenance of geogenic arsenic in the Goose River basin, Maine, USA. Environmental Geology, 41, 62–73.

    Article  CAS  Google Scholar 

  • Smedley, P. L. (1996). Arsenic in rural groundwater in Ghana. Journal of African Earth Sciences, 22, 459–470.

    Article  CAS  Google Scholar 

  • Smedley, P. L., & Kinniburgh, D. G. (2002). A review of the source, behaviour and distribution of arsenic in natural waters. Applied Geochemistry, 17, 517–568.

    Article  CAS  Google Scholar 

  • Smedley, P. L., Knudsen, J., & Maiga, D. (2007). Arsenic in groundwater from mineralised Proterozoic basement rocks of Burkina Faso. Applied Geochemistry, 22, 1074–1092.

    Article  CAS  Google Scholar 

  • Sorg, T. J., Chen, A. S. C., & Wang, L. (2014). Arsenic species in drinking water wells in the USA with high arsenic concentrations. Water Research, 48, 156–169.

    Article  CAS  Google Scholar 

  • Stuart, M. E., Gooddy, D. C., Bloomfield, J. P., & Williams, A. T. (2011). A review of the impact of climate change on future nitrate concentrations in groundwater of the UK. Science of the Total Environment, 409, 2859–2873.

    Article  CAS  Google Scholar 

  • Taylor, C. A., & Stefan, H. G. (2009). Shallow groundwater temperature response to climate change and urbanization. Journal of Hydrology, 375, 601–612.

    Article  CAS  Google Scholar 

  • Taylor, R. G., Scanlon, B., Döll, P., Rodell, M., Van Beek, R., Wada, Y., Longuevergne, L., Leblanc, M., Famiglietti, J. S., Edmunds, M., et al. (2013). Ground water and climate change. Nature Climate Change, 3, 322–329.

    Article  Google Scholar 

  • Tisserand, D., Pili, E., Hellmann, R., Boullier, A.-M., & Charlet, L. (2014). Geogenic arsenic in groundwaters in the western Alps. Journal of Hydrology, 518, Part C, 317–325.

    Article  Google Scholar 

  • Todd, A. S., Manning, A. H., Verplanck, P. L., Crouch, C., McKnight, D. M., & Dunham, R. (2012). Climate-change-driven deterioration of water quality in a mineralized watershed. Environmental Science & Technology, 46, 9324–9332.

    Article  CAS  Google Scholar 

  • van Roosmalen, L., Sonnenborg, T. O., & Jensen, K. H. (2009). Impact of climate and land use change on the hydrology of a large-scale agricultural catchment. Water Resources Research, 45, W00A15.

    Google Scholar 

  • Verplanck, P. L., Mueller, S. H., Goldfarb, R. J., Nordstrom, D. K., & Youcha, E. K. (2008). Geochemical controls of elevated arsenic concentrations in groundwater, Ester Dome, Fairbanks district, Alaska. Chemical Geology, 255, 160–172.

    Article  CAS  Google Scholar 

  • Waibel, M. S., Gannett, M. W., Chang, H., & Hulbe, C. L. (2013). Spatial variability of the response to climate change in regional groundwater systems-examples from simulations in the Deschutes Basin, Oregon. Journal of Hydrology, 486, 187–201.

    Article  Google Scholar 

  • Weldon, J. M., & MacRae, J. D. (2006). Correlations between arsenic in Maine groundwater and microbial populations as determined by fluorescence in situ hybridization. Chemosphere, 63, 440–448.

    Article  CAS  Google Scholar 

  • World Water Assessment Programme. (2009). The United Nations World Water Development Report 3: water in a changing world. Paris: UNESCO.

    Google Scholar 

  • Yang, Q., Culbertson, C. W., Nielsen, M. G., Schalk, C. W., Johnson, C. D., Marvinney, R. G., Stute, M., & Zheng, Y. (2015). Flow and sorption controls of groundwater arsenic in individual boreholes from bedrock aquifers in central Maine, USA. Science of The Total Environment, 505, 1291–1307.

    Article  CAS  Google Scholar 

  • Yang, Q., Jung, H. B., Culbertson, C. W., Marvinney, R. G., Loiselle, M. C., Locke, D. B., Cheek, H., Thibodeau, H., & Zheng, Y. (2009). Spatial pattern of groundwater arsenic occurrence and association with bedrock geology in greater Augusta, Maine. Environmental science & technology, 43, 2714–2719.

    Article  CAS  Google Scholar 

  • Yang, Q., Jung, H. B., Marvinney, R. G., Culbertson, C. W., & Zheng, Y. (2012). Can arsenic occurrence rates in bedrock aquifers be predicted? Environmental Science & Technology, 46, 2080–2087.

    Article  CAS  Google Scholar 

  • Zheng, Y., & Ayotte, J. D. (2015). At the crossroads: hazard assessment and reduction of health risks from arsenic in private well waters of the northeastern United States and Atlantic Canada. Science of The Total Environment, 505, 1237–1247.

    Article  CAS  Google Scholar 

  • Zhou, Y., Zwahlen, F., Wang, Y., & Li, Y. (2010). Impact of climate change on irrigation requirements in terms of groundwater resources. Hydrogeology journal, 18, 1571–1582.

    Article  Google Scholar 

  • Zkeri, E., Aloupi, M., & Gaganis, P. (2015). Natural occurrence of arsenic in groundwater from Lesvos Island, Greece. Water, Air, & Soil Pollution, 226(9), 1–16.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This project was funded by the Quebec Ministry of the Environment (Ministère du Développement durable, de l’Environnement et de la Lutte contre les changements climatiques) through the Groundwater Knowledge Acquisition Program (PACES) with significant contributions from regional partners involved in the PACES, including the Regional County Municipalities (Abitibi, Vallée-de-l’Or, Abitibi-Ouest, Ville de Rouyn-Noranda, Témiscamingue) and the Regional Conference of Elected Officials of Abitibi-Temiscamingue. The authors acknowledge the Foundation of the University of Quebec in Abitibi-Temiscamingue (FUQAT) and the Canadian Institute of Mining (Amos section) for scholarships and support to the project of Raphaël Bondu, respectively. Finally, the authors would like to acknowledge two anonymous reviewers for their constructive comments which contributed to improve this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raphaël Bondu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bondu, R., Cloutier, V., Rosa, E. et al. A Review and Evaluation of the Impacts of Climate Change on Geogenic Arsenic in Groundwater from Fractured Bedrock Aquifers. Water Air Soil Pollut 227, 296 (2016). https://doi.org/10.1007/s11270-016-2936-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-016-2936-6

Keywords

Navigation