Skip to main content
Log in

Electrochemical Degradation of Nonylphenol Ethoxylate-7 (NP7EO) Using a DiaClean® Cell Equipped with Boron-Doped Diamond Electrodes (BDD)

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Nowadays, the increasing pollution of natural water effluents with surfactant, wetting, dispersing, and emulsifying agents which contain nonylphenol ethoxylate (NP7EO) is an emerging problem that has not received the enough attention. Currently, it is known that degrading this type of highly stable compounds is possible through advanced electrochemical oxidation (AEO), but the degradation of NP7EO has not been tested yet. Thus, this work carries out a study of the degradation of the NP7EO (500 mg L−1) through advanced electrochemical oxidation, using a DiaClean® cell, equipped with boron-doped diamond electrodes (BDD, 70 cm2). The cell operated in a recirculation system with a peristaltic pump, which allowed to control the electrolyte flow. The buffer media for degradation was NH4OH 0.1 M/HCl 0.05 M (pH 9.25). The effect of the current density (j = 20, 30, 40 mA cm−2) was studied, and the cell efficiency for each condition was evaluated. The degradation was followed by total organic carbon (TOC), chemical oxygen demand (COD), and absorbance. The cell potential was monitored to determine the operating costs. The best conditions for the mineralization of NP7EO (initial concentration = 500 mg L−1) were applying 40 mA cm−2 and at a flow rate of 12.6 L min−1 during 8 h of electrolysis, achieving a 90% of TOC removal. Therefore, this technology appears as a promising alternative for degrading surfactants like NP7EO in aqueous media.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ahel, M., Giger, W., & Koch, M. (1994a). Behaviour of alkylphenol polyethoxylate surfactants in the aquatic environment—I. Occurrence and transformation in sewage treatment. Water Research, 28(5), 1131–1142. doi:10.1016/0043-1354(94)90200-3.

    Article  CAS  Google Scholar 

  • Ahel, M., Giger, W., & Schaffner, C. (1994b). Behaviour of alkylphenol polyethoxylate surfactants in the aquatic environment—II. Occurrence and transformation in rivers. Water Research, 28(5), 1143–1152. doi:10.1016/0043-1354(94)90201-1.

    Article  CAS  Google Scholar 

  • Akrout, H., Jellali, S., & Bousselmi, L. (2015). Enhancement of methylene blue removal by anodic oxidation using BDD electrode combined with adsorption onto sawdust. Comptes Rendus Chimie, 18(1), 110–120. doi:10.1016/j.crci.2014.09.006.

    Article  CAS  Google Scholar 

  • APHA-AWWA-WPCF (2005). Standard Methods for the Examination of Water and Wastewater, 21st edition. Washington DC: American Public Health Association, American Water Works Association, Water Pollution Control Federation.

  • Ayorinde, F. O., Hambright, P., Porter, T. N., & Keith, Q. L. (1999). Use of meso-tetrakis (pentafluorophenyl) porphyrin as a matrix for low molecular weight alkylphenol ethoxylates in laser desorption/ionization time-of-flight mass spectrometry. Rapid Communications in Mass Spectrometry, 13(24), 2474–2479. doi:10.1002/(SICI)1097-0231(19991230)13:24<2474::AID-RCM814>3.0.CO;2-0.

    Article  CAS  Google Scholar 

  • Brillas, E. (2014). Electro-Fenton, UVA photoelectro-Fenton and solar photoelectro-Fenton treatments of organics in waters using a boron-doped diamond anode: a review. Journal of the Mexican Chemical Society, 58, 239–255.

    CAS  Google Scholar 

  • Campos-González, E., Frontana-Uribe, B. A., Vasquez-Medrano, R., Macías-Bravo, S., & Ibánez, J. G. (2014). Advanced electrochemical oxidation of methyl parathion at boron-doped diamond electrodes. Journal of the Mexican Chemical Society, 58, 315–321.

    Google Scholar 

  • Chen, T.-S., Chen, P.-H., & Huang, K.-L. (2014). Electrochemical degradation of N,N-diethyl-m-toluamide on a boron-doped diamond electrode. Journal of the Taiwan Institute of Chemical Engineers, 45(5), 2615–2621. doi:10.1016/j.jtice.2014.06.020.

    Article  CAS  Google Scholar 

  • Ciorba, G. A., Radovan, C., Vlaicu, I., & Masu, S. (2002). Removal of nonylphenol ethoxylates by electrochemically-generated coagulants. Journal of Applied Electrochemistry, 32(5), 561–567. doi:10.1023/a:1016577230769.

    Article  CAS  Google Scholar 

  • Colborn, T., Meyers, J. P., & Dumanoski, D. (1997). Nuestro futuro robado: Ecoespaña. http://www.informativos.net/public/images/textos/Nuestro%20futuro%20robado.pdf. Accessed 18 July 2017.

  • Cox, C. (2002). Pyrethrins/pyrethrum. Journal of Pesticide Reform, 22, 14–20.

    Google Scholar 

  • Cserháti, T. (1995). Alkyl ethoxylated and alkylphenol ethoxylated nonionic surfactants: interaction with bioactive compounds and biological effects. Environmental Health Perspectives, 103(4), 358–364.

    Article  Google Scholar 

  • da Silva, S. W., Klauck, C. R., Siqueira, M. A., & Bernardes, A. M. (2015). Degradation of the commercial surfactant nonylphenol ethoxylate by advanced oxidation processes. Journal of Hazardous Materials, 282, 241–248. doi:10.1016/j.jhazmat.2014.08.014.

    Article  Google Scholar 

  • Ekdal, A. (2014). Fate of nonylphenol ethoxylate (NPEO) and its inhibitory impact on the biodegradation of acetate under aerobic conditions. Environmental Technology, 35(5–8), 741–748. doi:10.1080/09593330.2013.848939.

    Article  CAS  Google Scholar 

  • Enciso, R., Espinoza-Montero, P. J., Frontana-Uribe, B. A., Delgadillo, J. A., & Rodríguez-Torres, I. (2013). Theoretical analysis of the velocity profiles in a Diacell® cell applying computational fluid dynamics. ECS Transactions, 47(1), 13–23.

    Article  Google Scholar 

  • Espinoza-Montero, P. J., Vasquez-Medrano, R., Ibanez, J. G., & Frontana-Uribe, B. A. (2013). Efficient anodic degradation of phenol paired to improved cathodic production of H2O2 at BDD electrodes. Journal of the Electrochemical Society, 160(7), G3171–G3177. doi:10.1149/2.027307jes.

    Article  CAS  Google Scholar 

  • Fries, E. (2004). Occurrence of 4-Nonylphenol in rain and snow. Atmospheric Environment, 38(13), 2013–2016. doi:10.1016/j.atmosenv.2004.01.013.

    Article  CAS  Google Scholar 

  • Gao, D., Li, Z., Guan, J., Li, Y., & Ren, N. (2014). Removal of surfactants nonylphenol ethoxylates from municipal sewage-comparison of an A/O process and biological aerated filters. Chemosphere, 97, 130–134. doi:10.1016/j.chemosphere.2013.10.083.

    Article  CAS  Google Scholar 

  • John, D. M., House, W. A., & White, G. F. (2000). Environmental fate of nonylphenol ethoxylates: differential adsorption of homologs to components of river sediment. Environmental Toxicology and Chemistry, 19(2), 293–300. doi:10.1002/etc.5620190207.

    Article  CAS  Google Scholar 

  • Madsen, H. T., Sogaard, E. G., & Muff, J. (2014). Study of degradation intermediates formed during electrochemical oxidation of pesticide residue 2,6-dichlorobenzamide (BAM) at boron doped diamond (BDD) and platinum-iridium anodes. Chemosphere, 109, 84–91. doi:10.1016/j.chemosphere.2014.03.020.

    Article  CAS  Google Scholar 

  • Marselli, B., Garcia-Gomez, J., Michaud, P. A., Rodrigo, M. A., & Comninellis, C. (2003). Electrogeneration of hydroxyl radicals on boron-doped diamond electrodes. Journal of the Electrochemical Society, 150(3), D79. doi:10.1149/1.1553790.

    Article  CAS  Google Scholar 

  • Martínez, M. T., Torres, E., & Soto, J. A. (2004). Evaluation of compact heat exchangers of finned tubes. Informacion Tecnologica, 15, 47–54.

    Google Scholar 

  • Martins, A. F., Wilde, M. L., Vasconcelos, T. G., & Henriques, D. M. (2006). Nonylphenol polyethoxylate degradation by means of electrocoagulation and electrochemical Fenton. Separation and Purification Technology, 50(2), 249–255. doi:10.1016/j.seppur.2005.11.032.

    Article  CAS  Google Scholar 

  • Panizza, M., Brillas, E., & Comninellis, C. (2008). Application of boron-doped diamond electrodes for wastewater treatment. Journal of Environment Engineering Management, 18(3), 139–153.

    CAS  Google Scholar 

  • Pysmennyy, Y. (2007). Manual para el cálculo de Intercambiadores de calor y bancos de tubos aletados: Cálculo de la transmisión de calor (pp. 6-20). Madrid: Reverté

  • Robles Dávila, L., Valdés Mejía, J. F., Ortiz Arredondo, F., & Martínez García, L. (2008). Alternative to remove nonylphenol ethoxylate from industrial wastewater by a coupled process: physicochemical, advanced oxidation and adsorption. web.uaemex.mx/Red_Ambientales/docs/congresos/Ciudad%20Obregon/TECNOLOGIA_Y_BIOTECNOLOGIA_AMBIENTAL/TBA035.doc (Congress).

  • Schrank, S. G. (2003). Treatment of effluents from the leather industry through advanced oxidation processes. Florianópolis: Universidad Federal de Santa Catarina.

    Google Scholar 

  • Soto, A. M., Justicia, H., Wray, J. W., & Sonnenschein, C. (1991). p-Nonyl-phenol: an estrogenic xenobiotic released from “modified” polystyrene. Environmental Health Perspectives, 92, 167–173.

    Article  CAS  Google Scholar 

  • Souza, F. L., Saéz, C., Lanza, M. R. V., Cañizares, P., & Rodrigo, M. A. (2015). Removal of herbicide 2,4-D using conductive-diamond sono-electrochemical oxidation. Separation and Purification Technology, 149, 24–30. doi:10.1016/j.seppur.2015.05.018.

    Article  CAS  Google Scholar 

  • Vincent, J., Rello, J., Marshall, J., et al. (2009). International study of the prevalence and outcomes of infection in intensive care units. JAMA, 302(21), 2323–2329. doi:10.1001/jama.2009.1754.

    Article  CAS  Google Scholar 

  • Weiss, E., Groenen-Serrano, K., & Savall, A. (2007). A comparison of electrochemical degradation of phenol on boron doped diamond and lead dioxide anodes. Journal of Applied Electrochemistry, 38(3), 329–337. doi:10.1007/s10800-007-9442-x.

    Article  Google Scholar 

  • Yu, Y., Zhai, H., Hou, S., & Sun, H. (2009). Nonylphenol ethoxylates and their metabolites in sewage treatment plants and rivers of Tianjin, China. Chemosphere, 77(1), 1–7. doi:10.1016/j.chemosphere.2009.06.036.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The Centro de Investigaciones y Control Ambiental de la Escuela Politécnica Nacional and the Centro Conjunto de Investigación en Química Sustentable UAEM-UNAM for the funding for the development of this project. The technical support of María Citlalit Martínez Soto is recognized.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Patricio J. Espinoza-Montero or Bernardo A. Frontana-Uribe.

Electronic supplementary material

ESM 1

(PDF 202 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Armijos-Alcocer, K.G., Espinoza-Montero, P.J., Frontana-Uribe, B.A. et al. Electrochemical Degradation of Nonylphenol Ethoxylate-7 (NP7EO) Using a DiaClean® Cell Equipped with Boron-Doped Diamond Electrodes (BDD). Water Air Soil Pollut 228, 289 (2017). https://doi.org/10.1007/s11270-017-3471-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-017-3471-9

Keywords

Navigation