Skip to main content

Advertisement

Log in

Functionalization of Cotton by RGO/TiO2 to Enhance Photodegradation of Rhodamine B Under Simulated Solar Irradiation

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Reduced graphene oxide (RGO) and titanium dioxide (TiO2) nanoparticles were immobilized on cotton textile substrates to produce self-cleaning textiles. Varying number of layers of RGO and TiO2 nanoparticles were coated by a facile method, and their photocatalytic potential was evaluated by measuring the degradation rate of rhodamine B (Rh-B) in an aqueous solution in a photoreactor under simulated solar irradiation. X-ray diffraction (XRD) and zeta potential measurements of starting materials were studied as they are crucial for innovative methods of functionalization. The study confirms that it is possible to ensure a good adhesion of nanoparticles on textile samples without the use of a resin. The application of varying number of RGO and TiO2 coatings has influence on photocatalytic properties of functionalized cotton textile substrates. The energy band gap of the samples reduces from 3.25 to −3.20 eV with the number of RGO coatings. All five de-ethylated intermediates of Rh-B during the photocatalytic degradation were identified using a high-performance liquid chromatography–mass spectrometry method. The experimental results show that, in general, the higher the number of RGO coatings is, the higher the photocatalytic efficiency (η) of the functionalized substrate is (η=87% for three RGO coatings on TiO2).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • Abdel-Messih, M. F., Ahmed, M. A., & El-Sayed, A. S. (2013). Photocatalytic decolorization of rhodamine B dye using novel mesoporous SnO2–TiO2 nano mixed oxides prepared by sol–gel method. Journal of Photochemistry and Photobiology A: Chemistry, 260, 1–8.

    Article  CAS  Google Scholar 

  • Blanton, T. N., & Majumdar, D. (2012). X-ray diffraction characterization of polymer intercalated graphite oxide. Powder Diffraction, 27(2), 104–107.

    Article  CAS  Google Scholar 

  • Carneiro, J. O., Azevedo, S., Fernandes, F., Freitas, E., Pereira, M., Tavares, C. J., Lanceros-Méndez, S., & Teixeira, V. (2014). Synthesis of iron-doped TiO2 nanoparticles by ball-milling process: the influence of process parameters on the structural, optical, magnetic, and photocatalytic properties. Journal of Materials Science, 49, 7476–7488.

    Article  CAS  Google Scholar 

  • Chang, C. T., Wang, J. J., Ouyang, T., Zhang, Q., & Jing, Y. H. (2015). Photocatalytic degradation of acetaminophen in aqueous solutions by TiO2/ZSM-5 zeolite with low energy irradiation. Materials Science & Engineering B: Solid-State Materials for Advanced Technology, 196, 53–60.

    Article  CAS  Google Scholar 

  • Chen, C., Zhao, W., Lei, P., Zhao, J., & Serpone, N. (2004). Photosensitized degradation of dyes in polyoxometalate solutions versus TiO2 dispersions under visible-light irradiation: mechanistic implications. Chemistry - A European Journal, 10, 1956–1965.

    Article  CAS  Google Scholar 

  • Chen, C., Ma, W., & Zhao, J. (2010). Semiconductor-mediated photodegradation of pollutants under visible-light irradiation. Chemical Society Reviews, 39(11), 4206–4219.

    Article  CAS  Google Scholar 

  • Dreyer, D. R., Park, S., Bielawski, C. W., & Ruoff, R. S. (2010). The chemistry of graphene oxide. Chemical Society Reviews, 39, 228–240.

    Article  CAS  Google Scholar 

  • Ebejer, N., Güell, A. G., Lai, S. C. S., McKelvey, K., Snowden, M. E., & Unwin, P. R. (2013). Scanning electrochemical cell microscopy: a versatile technique for nanoscale electrochemistry and functional imaging. Annual Review of Analytical Chemistry, 6, 329–351.

    Article  CAS  Google Scholar 

  • Gao, W., Alemany, L. B., Ci, L., & Ajayan, P. M. (2009). New insights into the structure and reduction of graphite oxide. Nature Chemistry, 1(5), 403–408.

    Article  CAS  Google Scholar 

  • Gaya, U. I., & Abdullah, A. H. (2008). Heterogeneous photocatalytic degradation of organic contaminants over titanium dioxide: a review of fundamentals, progress and problems. Journal of Photochemistry and Photobiology C Photochemistry Reviews, 9(1), 1–12.

    Article  CAS  Google Scholar 

  • Gu, Y., Xing, M., & Zhang, J. (2014). Synthesis and photocatalytic activity of graphene based doped TiO2 nanocomposites. Applied Surface Science, 319, 8–15.

    Article  CAS  Google Scholar 

  • He, Y., Sutton, N. B., Rijnaarts, H. H. H., & Langenhoff, A. A. M. (2016). Degradation of pharmaceuticals in wastewater using immobilized TiO2 photocatalysis under simulated solar irradiation. Applied Catalysis B: Environmental, 182, 132–141.

    Article  CAS  Google Scholar 

  • Hea, C., Denga, C., Wanga, J., Gua, X., Wua, T., Zhub, K., & Liu, Y. (2016). Crystal orientation dependent optical transmittance and band gap of Na0.5Bi0.5TiO3–BaTiO3 single crystals. Physica B: Condensed Matter, 483, 44–47.

    Article  Google Scholar 

  • Hua, W., You, T., Shi, W., Li, J., & Lin, G. (2012). Au/TiO2/Au as a plasmonic coupling photocatalyst. Journal of Physical Chemistry C, 116(10), 6490–6494.

    Article  Google Scholar 

  • Janin, T., Goetz, V., Brosillon, S., & Plantard, G. (2013). Solar photocatalytic mineralization of 2,4-dichlorophenol and mixtures of pesticides: kinetic model of mineralization. Solar Energy, 87, 127–135.

    Article  CAS  Google Scholar 

  • Karimi, L., Yazdanshenas, M. E., Khajavi, R., Rashidi, A., & Mirjalili, M. (2014). Using graphene/TiO2 nanocomposite as a new route for preparation of electroconductive, self-cleaning, antibacterial and antifungal cotton fabric without toxicity. Cellulose, 21(5), 3813–3827.

    Article  CAS  Google Scholar 

  • Khan, A. F., Mehmood, M., Durrani, S. K., Ali, M. L., & Rahim, N. A. (2014). Structural and optoelectronic properties of nanostructured TiO2 thin films with annealing. Materials Science in Semiconductor Processing, 29, 161–169.

    Article  Google Scholar 

  • Kumar, S. G., & Devi, L. G. (2011). Review on modified TiO2 photocatalysis under UV/visible light: selected results and related mechanisms on interfacial charge carrier transfer dynamics. The Journal of Physical Chemistry. A, 115(46), 13211–13241.

    Article  CAS  Google Scholar 

  • Lee, W., Lee, J. U., Jung, B. M., Byun, J.-H., Yi, J.-W., Lee, S.-B., & Kim, B.-S. (2013a). Simultaneous enhancement of mechanical, electrical and thermal properties of graphene oxide paper by embedding dopamine. Carbon, 65, 296–304.

    Article  CAS  Google Scholar 

  • Lee, H., Park, S. H., Park, Y.-K., Kim, B. H., Kim, S.-J., & Jung, S.-C. (2013b). Rapid destruction of the rhodamine B using TiO2 photocatalyst in the liquid phase plasma. Chemistry Central Journal, 7, 156.

    Article  Google Scholar 

  • Molina, J. (2016). Graphene-based fabrics and their applications: a review. RSC Advances, 6, 68261–68291.

    Article  CAS  Google Scholar 

  • Molina, J., Fernández, J., Inés, J. C., del Río, A. I., Bonastre, J., & Cases, F. (2013). Electrochemical characterization of reduced graphene oxide-coated polyester fabrics. Electrochimica Acta, 93, 44–52.

    Article  CAS  Google Scholar 

  • Molina, J., Fernandes, F., Fernández, J., Pastor, M., Correia, A., Souto, A. P., Carneiro, J. O., Teixeira, V., & Cases, F. (2015). Photocatalytic fabrics based on reduced graphene oxide and TiO2 coatings. Materials Science and Engineering B, 199, 62–76.

    Article  CAS  Google Scholar 

  • Molina, J., Fernández, J., & Cases, F. (2016). Scanning electrochemical microscopy for the analysis and patterning of graphene materials: a review. Synthetic Metals, 222, 145–161.

    Article  CAS  Google Scholar 

  • Nguyen-Phan, T. D., Pham, V. H., Shin, E. W., Pham, H. D., Kim, S., Chung, J. S., Kim, E. J., & Hur, S. H. (2011). The role of graphene oxide content on the adsorption-enhanced photocatalysis of titanium dioxide/graphene oxide composites. Chemical Engineering Journal, 170(1), 226–232.

    Article  CAS  Google Scholar 

  • Pakdel, E., & Daoud, W. A. (2013). Self-cleaning cotton functionalized with TiO2/SiO2: focus on the role of silica. Journal of Colloid and Interface Science, 401, 1–7.

    Article  CAS  Google Scholar 

  • Sun, P., Laforge, F. O., & Mirkin, M. V. (2007). Scanning electrochemical microscopy in the 21st century. Physical Chemistry Chemical Physics, 9, 802–823.

    Article  CAS  Google Scholar 

  • Valencia, S., Marin, J. M., & Restrepo, G. (2010). Study of the band gap of synthesized titanium dioxide nanoparticles using the sol-gel method and a hydrothermal treatment. Open Mater. Sci. J., 4, 9–14.

    CAS  Google Scholar 

  • Wu, T.X., Liu, G.M., , Hidaka, H., and Serpone, N. (1998) Photoassisted degradation of dye pollutants. V. Self-photosensitized oxidative transformation of rhodamine B under visible light irradiation in aqueous TiO2 dispersions. The Journal of Physical Chemistry. B, 102 (30), 5845–5851.

    Article  CAS  Google Scholar 

  • Xu, B., Ding, J., Feng, L., Ding, Y., Ge, F., & Cai, Z. (2015). Self-cleaning cotton fabrics via combination of photocatalytic TiO2 and superhydrophobic SiO2. Surface and Coatings Technology, 262, 70–76.

    Article  CAS  Google Scholar 

  • Zhang, Y., & Pan, C. (2011). TiO2/graphene composite from thermal reaction of graphene oxide and its photocatalytic activity in visible light. Journal of Materials Science, 46, 2622–2626.

    Article  CAS  Google Scholar 

  • Zhang, H., Lv, X., Li, Y., Wang, Y., & Li, J. (2010). P25-graphene composite as a high performance photocatalyst. ACS Nano, 4(1), 380–386.

    Article  CAS  Google Scholar 

  • Zhao, D., Chen, C., Wang, Y., Ma, W., Zhao, J., Rajh, T., & Zang, L. (2007). Enhanced photocatalytic degradation of dye pollutants under visible irradiation on Al (III)-modified TiO2: structure, interaction, and interfacial electron transfer. Environmental Science & Technology, 42(1), 308–314.

    Article  Google Scholar 

  • Zhao, K., Feng, L., Lin, H., Fu, Y., Lin, B., Cui, W., Li, S., & Wei, J. (2014). Adsorption and photocatalytic degradation of methyl orange imprinted composite membranes using TiO2/calcium alginate hydrogel as matrix. Catalysis Today, 236, 127–134.

    Article  CAS  Google Scholar 

  • Zhu, W., Zeng, C., Zheng, J. P., Liang, R., Zhang, C., & Wang, B. (2011). Preparation of Buckypaper supported Pt catalyst for PEMFC using a supercritical fluid method. Electrochemical and Solid-State Letters, 14(8), B81–B83.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

S. Landi Jr. expresses his gratitude to the Brazilian Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) for sporting his Doctoral Fellowship performed in Physics Centre at University of Minho. J. Molina wishes to thank the Spanish Ministerio de Ciencia e Innovación (contract CTM2011-23583) for the financial support. Moreover, the authors still want to thank the Portuguese Foundation for Science and Technology (FCT) for its contribution in financial support of this research work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to J. O. Carneiro or A. P. Samantilleke.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Landi, S., Carneiro, J.O., Fernandes, F. et al. Functionalization of Cotton by RGO/TiO2 to Enhance Photodegradation of Rhodamine B Under Simulated Solar Irradiation. Water Air Soil Pollut 228, 335 (2017). https://doi.org/10.1007/s11270-017-3533-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-017-3533-z

Keywords

Navigation