Skip to main content
Log in

Artificial Neural Network (ANN) for Modelling Adsorption of Lead (Pb (II)) from Aqueous Solution

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

This study investigated the efficiency of rice husk carbon (RHC) for lead (Pb (II)) adsorption. The developed RHC was characterized by CHNS analyser, FTIR and FESEM. BET surface area, micropore area, micropore volume and average pore diameter of RHC were 58.54 m2/g, 14.53 m2/g, 0.007209 mL/g, and 45.46 Å, respectively. Batch adsorption experiments were conducted to assess the effect of initial pH, contact time, initial Pb (II) concentration and RHC dose on Pb (II) removal. A contact time of 120 min and a pH value of 5 were found as optimum for Pb (II) adsorption; maximum adsorption occurred at 8 g/L of RHC dose. Artificial neural network (ANN) was applied to model Pb (II) adsorption. For prediction of Pb (II) adsorption from aqueous solution by RHC, the smallest mean square error (MSE) and the largest coefficient of determination (R2) values were, respectively, obtained as 6.0053 and 0.988567 with Levenberg–Marquardt algorithm (LMA). Hence, it was selected as the best training algorithm. Traincgf and traincgp functions followed this function with a MSE of 6.1496 and 6.2967, respectively. Adsorption of Pb (II) by RHC followed pseudo-second-order kinetics. The experimental data were described well by both Langmuir and Freundlich isotherm models. Thermodynamics study revealed that Pb (II) adsorption by RHC was spontaneous and endothermic, and the system randomness increased during the whole process. Pb (II) adsorption capacity of RHC was compared with different adsorbents. As evidenced by its high adsorption capacity, RHC can be used as an effective adsorbent for Pb (II) removal from aqueous solutions and wastewaters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Abdulkarim, M., & Abu Al-Rub, F. (2004). Adsorption of lead ions from aqueous solution onto activated carbon and chemically-modified activated carbon prepared from date pits. Adsorption Science & Technology, 22(2), 119–134.

    Article  CAS  Google Scholar 

  • Alslaibi, T. M., Abustan, I., Ahmad, M. A., & Foul, A. A. (2014). Kinetics and equilibrium adsorption of iron (II), lead (II), and copper (II) onto activated carbon prepared from olive stone waste. Desalination and Water Treatment, 52(40–42), 7887–7897.

    Article  CAS  Google Scholar 

  • Amuda, O., Giwa, A., & Bello, I. (2007). Removal of heavy metal from industrial wastewater using modified activated coconut shell carbon. Biochemical Engineering Journal, 36(2), 174–181.

    Article  CAS  Google Scholar 

  • An, D., Guo, Y., Zou, B., Zhu, Y., & Wang, Z. (2011). A study on the consecutive preparation of silica powders and active carbon from rice husk ash. Biomass and Bioenergy, 35(3), 1227–1234. https://doi.org/10.1016/j.biombioe.2010.12.014.

    Article  CAS  Google Scholar 

  • Bansal, M., Garg, U., Singh, D., & Garg, V. (2009). Removal of Cr (VI) from aqueous solutions using pre-consumer processing agricultural waste: a case study of rice husk. Journal of Hazardous Materials, 162(1), 312–320.

    Article  CAS  Google Scholar 

  • Cechinel, M. A. P., & de Souza, A. A. U. (2014). Study of lead (II) adsorption onto activated carbon originating from cow bone. Journal of Cleaner Production, 65, 342–349.

    Article  CAS  Google Scholar 

  • Chakraborty, S., Chowdhury, S., & Saha, P. D. (2011). Adsorption of crystal violet from aqueous solution onto NaOH-modified rice husk. Carbohydrate Polymers, 86(4), 1533–1541.

    Article  Google Scholar 

  • Chand, P., & Pakade, Y. B. (2013). Removal of Pb from water by adsorption on apple pomace: equilibrium, kinetics, and thermodynamics studies. Journal of Chemistry, 2013. https://doi.org/10.1155/2013/164575.

  • Chand, P., Shil, A. K., Sharma, M., & Pakade, Y. B. (2014). Improved adsorption of cadmium ions from aqueous solution using chemically modified apple pomace: mechanism, kinetics, and thermodynamics. International Biodeterioration & Biodegradation, 90, 8–16.

    Article  CAS  Google Scholar 

  • Chuah, T., Jumasiah, A., Azni, I., Katayon, S., & Choong, S. T. (2005). Rice husk as a potentially low-cost biosorbent for heavy metal and dye removal: an overview. Desalination, 175(3), 305–316.

    Article  CAS  Google Scholar 

  • Daffalla, S. B., Mukhtar, H., & Shaharun, M. S. (2010). Characterization of adsorbent developed from rice husk: effect of surface functional group on phenol adsorption. Journal of Applied Sciences, 10(12), 1060–1067.

    Article  CAS  Google Scholar 

  • Depci, T., Kul, A. R., & Önal, Y. (2012). Competitive adsorption of lead and zinc from aqueous solution on activated carbon prepared from Van apple pulp: study in single-and multi-solute systems. Chemical Engineering Journal, 200, 224–236.

    Article  Google Scholar 

  • Dubey, A., & Shiwani, S. (2012). Adsorption of lead using a new green material obtained from Portulaca plant. International journal of Environmental Science and Technology, 9(1), 15–20.

    Article  CAS  Google Scholar 

  • El-Shafey, E. (2005). Behaviour of reduction–sorption of chromium (VI) from an aqueous solution on a modified sorbent from rice husk. Water, Air, and Soil Pollution, 163(1–4), 81–102.

    Article  CAS  Google Scholar 

  • Fadzil, F., Ibrahim, S., & Hanafiah, M. A. K. M. (2016). Adsorption of lead (II) onto organic acid modified rubber leaf powder: batch and column studies. Process Safety and Environmental Protection, 100, 1–8.

    Article  CAS  Google Scholar 

  • Fan, C., Du, B., Zhang, Y., Ding, S., Gao, Y., & Chang, M. (2016). Adsorption of lead on organo-mineral complexes isolated from loess in Northwestern China. Journal of Geochemical Exploration, 176, 50–56.

  • Feng, N.-c., & Guo, X.-y. (2012). Characterization of adsorptive capacity and mechanisms on adsorption of copper, lead and zinc by modified orange peel. Transactions of Nonferrous Metals Society of China, 22(5), 1224–1231. https://doi.org/10.1016/S1003-6326(11)61309-5.

    Article  CAS  Google Scholar 

  • Garba, Z. N., Bello, I., Galadima, A., & Lawal, A. Y. (2016). Optimization of adsorption conditions using central composite design for the removal of copper (II) and lead (II) by defatted papaya seed. Karbala International Journal of Modern Science, 2(1), 20–28. https://doi.org/10.1016/j.kijoms.2015.12.002.

    Article  Google Scholar 

  • Hossain, M., Ngo, H., Guo, W., & Setiadi, T. (2012). Adsorption and desorption of copper (II) ions onto garden grass. Bioresource Technology, 121, 386–395.

    Article  CAS  Google Scholar 

  • Imamoglu, M., & Tekir, O. (2008). Removal of copper (II) and lead (II) ions from aqueous solutions by adsorption on activated carbon from a new precursor hazelnut husks. Desalination, 228(1), 108–113.

    Article  CAS  Google Scholar 

  • Isa, M. H., Ibrahim, N., Aziz, H. A., Adlan, M. N., Sabiani, N. H. M., Zinatizadeh, A. A. L., et al. (2008). Removal of chromium (VI) from aqueous solution using treated oil palm fibre. Journal of Hazardous Materials, 152(2), 662–668. https://doi.org/10.1016/j.jhazmat.2007.07.033.

    Article  CAS  Google Scholar 

  • Isa, M. H., Lang, L. S., Asaari, F. A., Aziz, H. A., Ramli, N. A., & Dhas, J. P. A. (2007). Low cost removal of disperse dyes from aqueous solution using palm ash. Dyes and Pigments, 74(2), 446–453.

    Article  Google Scholar 

  • Johns, M. M., Marshall, W. E., & Toles, C. A. (1998). Agricultural by-products as granular activated carbons for adsorbing dissolved metals and organics. Journal of Chemical Technology and Biotechnology, 71(2), 131–140.

    Article  CAS  Google Scholar 

  • Kannan, N., & Veemaraj, T. (2009). Removal of lead (II) ions by adsorption onto bamboo dust and commercial activated carbons—a comparative study. Journal of Chemistry, 6(1), 247–256.

    CAS  Google Scholar 

  • Khan, T., Ab Wahap, S. A. B., & Chaudhuri, M. (2012). Adsorption of arsenite from water by rice husk silica. Nature, Environment and Pollution Technology, 11(2), 229–233.

    CAS  Google Scholar 

  • Khan, T., Isa, M. H., Chaudhuri, M., Mustafa, M. R. U., & Saeed, M. O. (2014). Determination of adsorption capacity of agricultural-based carbon for Ni (II) adsorption from aqueous solution. Applied Mechanics and Materials, 567, 20–25 Trans Tech Publ.

    Article  Google Scholar 

  • Khan, T., Isa, M. H., Mustafa, M. R. U., Yeek-Chia, H., Baloo, L., Manan, T. S. B. A., et al. (2016). Cr (VI) adsorption from aqueous solution by an agricultural waste based carbon. RSC Advances, 6(61), 56365–56374.

    Article  CAS  Google Scholar 

  • Kobya, M., Demirbas, E., Senturk, E., & Ince, M. (2005). Adsorption of heavy metal ions from aqueous solutions by activated carbon prepared from apricot stone. Bioresource Technology, 96(13), 1518–1521. https://doi.org/10.1016/j.biortech.2004.12.005.

    Article  CAS  Google Scholar 

  • Largitte, L., & Laminie, J. (2015). Modelling the lead concentration decay in the adsorption of lead onto a granular activated carbon. Journal of Environmental Chemical Engineering, 3(1), 474–481.

    Article  CAS  Google Scholar 

  • Lin, X., Wu, J., Fan, J., Qian, W., Zhou, X., Qian, C., et al. (2012). Adsorption of butanol from aqueous solution onto a new type of macroporous adsorption resin: studies of adsorption isotherms and kinetics simulation. Journal of Chemical Technology and Biotechnology, 87(7), 924–931.

    Article  CAS  Google Scholar 

  • Liu, W.-J., Zeng, F.-X., Jiang, H., & Zhang, X.-S. (2011a). Adsorption of lead (Pb) from aqueous solution with Typha angustifolia biomass modified by SOCl2 activated EDTA. Chemical Engineering Journal, 170(1), 21–28. https://doi.org/10.1016/j.cej.2011.03.020.

    Article  CAS  Google Scholar 

  • Liu, W.-J., Zeng, F.-X., Jiang, H., & Zhang, X.-S. (2011b). Adsorption of lead (Pb) from aqueous solution with Typha angustifolia biomass modified by SOCl 2 activated EDTA. Chemical Engineering Journal, 170(1), 21–28.

    Article  CAS  Google Scholar 

  • Momčilović, M., Purenović, M., Bojić, A., Zarubica, A., & Ranđelović, M. (2011a). Removal of lead (II) ions from aqueous solutions by adsorption onto pine cone activated carbon. Desalination, 276(1), 53–59.

    Google Scholar 

  • Momčilović, M., Purenović, M., Bojić, A., Zarubica, A., & Ranđelović, M. (2011b). Removal of lead(II) ions from aqueous solutions by adsorption onto pine cone activated carbon. Desalination, 276(1–3), 53–59. https://doi.org/10.1016/j.desal.2011.03.013.

    Google Scholar 

  • Mustafa, M. R., Rezaur, R. B., Saiedi, S., & Isa, M. H. (2012). River suspended sediment prediction using various multilayer perceptron neural network training algorithms—a case study in Malaysia. Water Resources Management, 26(7), 1879–1897.

    Article  Google Scholar 

  • Naiya, T. K., Bhattacharya, A. K., Mandal, S., & Das, S. K. (2009). The sorption of lead (II) ions on rice husk ash. Journal of Hazardous Materials, 163(2), 1254–1264.

    Article  CAS  Google Scholar 

  • Nakbanpote, W., Goodman, B. A., & Thiravetyan, P. (2007). Copper adsorption on rice husk derived materials studied by EPR and FTIR. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 304(1), 7–13.

    Article  CAS  Google Scholar 

  • Namasivayam, C., Radhika, R., & Suba, S. (2001). Uptake of dyes by a promising locally available agricultural solid waste: coir pith. Waste Management, 21(4), 381–387.

    Article  CAS  Google Scholar 

  • Noor Syuhadah, S., & Rohasliney, H. (2012). Rice husk as biosorbent: a review. Health Environmental Journal, 3, 89–95.

    Google Scholar 

  • Olgun, A., & Atar, N. (2012). Equilibrium, thermodynamic and kinetic studies for the adsorption of lead (II) and nickel (II) onto clay mixture containing boron impurity. Journal of Industrial and Engineering Chemistry, 18(5), 1751–1757.

    Article  CAS  Google Scholar 

  • Pitsari, S., Tsoufakis, E., & Loizidou, M. (2013). Enhanced lead adsorption by unbleached newspaper pulp modified with citric acid. Chemical Engineering Journal, 223, 18–30.

    Article  CAS  Google Scholar 

  • Prakash, N., Manikandan, S. A., Govindarajan, L., & Vijayagopal, V. (2008). Prediction of biosorption efficiency for the removal of copper(II) using artificial neural networks. Journal of Hazardous Materials, 152(3), 1268–1275. https://doi.org/10.1016/j.jhazmat.2007.08.015.

    Article  CAS  Google Scholar 

  • Reddy, D. H. K., Ramana, D., Seshaiah, K., & Reddy, A. (2011). Biosorption of Ni (II) from aqueous phase by Moringa oleifera bark, a low cost biosorbent. Desalination, 268(1), 150–157.

    Article  CAS  Google Scholar 

  • Rene, E. R., Veiga, M. C., & Kennes, C. (2009). Experimental and neural model analysis of styrene removal from polluted air in a biofilter. Journal of Chemical Technology and Biotechnology, 84(7), 941–948. https://doi.org/10.1002/jctb.2130.

    Article  CAS  Google Scholar 

  • Roy, A., Adhikari, B., & Majumder, S. (2013). Equilibrium, kinetic, and thermodynamic studies of azo dye adsorption from aqueous solution by chemically modified lignocellulosic jute fiber. Industrial & Engineering Chemistry Research, 52(19), 6502–6512.

    Article  CAS  Google Scholar 

  • Srivastava, V. C., Mall, I. D., & Mishra, I. M. (2006). Characterization of mesoporous rice husk ash (RHA) and adsorption kinetics of metal ions from aqueous solution onto RHA. Journal of Hazardous Materials, 134(1), 257–267.

    Article  CAS  Google Scholar 

  • Tan, G., Yuan, H., Liu, Y., & Xiao, D. (2010). Removal of lead from aqueous solution with native and chemically modified corncobs. Journal of Hazardous Materials, 174(1), 740–745.

    Article  CAS  Google Scholar 

  • Tangjuank, S., Insuk, N., Tontrakoon, J., & Udeye, V. (2009). Adsorption of lead (II) and cadmium (II) ions from aqueous solutions by adsorption on activated carbon prepared from cashew nut shells. World Academy of Science, Engineering and Technology, 52, 110–116.

    Google Scholar 

  • Tavlieva, M. P., Genieva, S. D., Georgieva, V. G., & Vlaev, L. T. (2013). Kinetic study of brilliant green adsorption from aqueous solution onto white rice husk ash. Journal of Colloid and Interface Science, 409, 112–122.

    Article  CAS  Google Scholar 

  • Vempati, R. K., Musthyala, S. C., Mollah, M. Y. A., & Cocke, D. L. (1995). Surface analyses of pyrolysed rice husk using scanning force microscopy. Fuel, 74(11), 1722–1725. https://doi.org/10.1016/0016-2361(94)00119-C.

    Article  CAS  Google Scholar 

  • Wang, G., Zhang, S., Yao, P., Chen, Y., Xu, X., Li, T., et al. (2015). Removal of Pb (II) from aqueous solutions by Phytolacca americana L. biomass as a low cost biosorbent. Arabian Journal of Chemistry. https://doi.org/10.1016/j.arabjc.2015.06.011.

  • Wuana, R. A., & Okieimen, F. E. (2011). Heavy metals in contaminated soils: a review of sources, chemistry, risks and best available strategies for remediation. ISRN Ecology, 2011. https://doi.org/10.5402/2011/402647.

  • Zhang, W., Meng, L., Mu, G., Zhao, M., Zou, P., & Zhang, Y. (2016). A facile strategy for fabrication of nano-ZnO/yeast composites and their adsorption mechanism towards lead (II) ions. Applied Surface Science, 378, 196–206.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the Universiti Teknologi PETRONAS (UTP), Malaysia, for providing facilities and technical support for this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Hasnain Isa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, T., Mustafa, M.R.U., Isa, M.H. et al. Artificial Neural Network (ANN) for Modelling Adsorption of Lead (Pb (II)) from Aqueous Solution. Water Air Soil Pollut 228, 426 (2017). https://doi.org/10.1007/s11270-017-3613-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-017-3613-0

Keywords

Navigation