Skip to main content
Log in

Bioremediation vs. Nanoremediation: Degradation of Polychlorinated Biphenyls (PCBS) Using Integrated Remediation Approaches

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Integration of physicochemical and biological approach represented by sequential application of nanoscale zerovalent iron (nZVI dispersion) and bioaugmentation by bacterial strains isolated from the PCB-contaminated site seems to be an innovative way to remove the PCB contamination, which still persists in the environment. First, nanoremediation of the minimal mineral medium artificially contaminated with Delor 103 and of historically contaminated sediment was performed in 70% and 46% PCB removal efficiency. Integrated remediation was carried out as bionanoremediation initiated by addition of bacterial strains and finished by addition of nZVI dispersion Nanofer 25S. Nanobioremediation initiated by nZVI and followed by the addition of bacterial strains A. xylosoxidans, S. maltophilia, and O. anthropi was more effective and led to the increase of PCB degradation to 75%, 85%, and 99%. The bacterial mixed culture (BMC) consisted of 7 bacterial strains with PCB-degrading activity was used for integrated remediation, as well. By the nanobioremediation of the historically contaminated sediment, 78% degradation of PCBs was achieved by combining the nZVI and BMC, with the addition of non-ionic surfactant Triton X-100. The sediment was periodically reinoculated with fresh nZVI dispersion and BMC inoculum. The possible toxic effects of nZVI in concentration used in integrated remediation 2 g l−1 were evaluated on bacterial strains used for integrated remediation. The cell concentrations of the bacterial strains A. xylosoxidans, S. maltophilia, and O. anthropi, expressed as CFU ml−1, decreased in the presence of nZVI by 75%, 52%, and 61%, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Bae, S., Collins, R. N., Waite, T. D., & Hanna, K. (2018). Advances in surface passivation of nanoscale zerovalent iron (NZVI): a critical review. Environmental Science and Technology, 52, 12010–12025.

    Article  CAS  Google Scholar 

  • Bokare, V., Murugesan, K., Kim, J. H., Kim, E. J., & Chang, Y. S. (2010). Degradation of triclosan by an integrated nano-bio redox process. Bioresource Technology, 101, 6354–6360.

    Article  CAS  Google Scholar 

  • Cecchin, I., Reddy, K. R., Thomé, A., Tessaro, E. F., & Schnaid, F. (2017). Nanobioremediation: integration of nanoparticles and bioremediation for sustainable remediation of chlorinated organic contaminants in soils. International Biodeterioration and Biodegradation, 119, 419–428.

    Article  CAS  Google Scholar 

  • Colombo, A., Dragonatti, C., Magni, M., & Roberto, D. (2015). Degradation of toxic halogenated organic compounds by iron-containing mono-, bi-, and tri-metallic particles in water. Inorgica Chimica Acta, 431, 48–60.

    Article  CAS  Google Scholar 

  • Dercová, K., Lászlová, K., Dudášová, H., Murínová, S., Balaščáková, M., & Škarba, J. (2015). The hierarchy in selection of bioremediation techniques: the potentials of utilizing bacterial degraders. Chemické Listy, 109, 279–288 (in Slovak).

    Google Scholar 

  • Dudášová, H., Lukáčová, L., Murínová, S., Puškárová, A., Pangallo, D., & Dercová, K. (2014). Bacterial strains isolated from PCB-contaminated sediments and their use for bioaugmentation strategy in microcosms. Journal of Basic Microbiology, 54, 253–260.

    Article  Google Scholar 

  • Ezzatahmadi, N., Ayoko, G. A., Millar, G. J., Speight, R., Yan, C., Li, J., Li, S., Zhu, J., & Xi, Y. (2017). Clay-supported nanoscale zero-valent iron composite materials for the remediation of contaminated aqueous solutions. Chemical Engineering Journal, 312, 336–350.

    Article  CAS  Google Scholar 

  • Fajardo, C., Saccà, M. L., Martinez-Gomariz, M., Costa, G., Nande, M., & Martin, M. (2013). Transcriptional and proteomic stress responses of a soil bacterium Bacillus cereus to nanosized zero-valent iron (nZVI) particles. Chemosphere, 93, 1077–1083.

    Article  CAS  Google Scholar 

  • Fu, F., Dionysiou, D. D., & Liu, H. (2014). The use of zero-valent iron for groundwater remediation and wastewater treatment: a review. Journal of Hazardous Materials, 267, 194–205.

    Article  CAS  Google Scholar 

  • Galdames, A., Mendoza, A., Orueta, M., de Soto García, I. S., Sánchez, M., Virto, I., & Vilas, J. L. (2017). Development of new technologies for contaminated soils based on the application of zero-valent iron nanoparticles and bioremediation with compost. Resource-Efficient Technologies, 3, 166–176.

    Article  Google Scholar 

  • Horváthová, H., Lászlová, K., & Dercová, K. (2018). Bioremediation of PCB-contaminated shallow river sediments: the efficacy of biodegradation using individual bacterial strains and their consortia. Chemosphere, 193, 270–277.

    Article  Google Scholar 

  • Horváthová, H., Lászlová, K., & Dercová, K. (2019). The remediation potential of bacterial mixed cultures for the biodegradation of polychlorinated biphenyls (PCBs). Acta Chimica Slovaca, 12, 1–7.

    Article  Google Scholar 

  • Keller, A., Garner, K., Miller, R., & Leniham, H. (2012). Toxicity of nano-zero valent iron to freshwater and marine organisms. PLoS One, 7, e43983.

    Article  CAS  Google Scholar 

  • Kirschling, T. L., Gregory, K. B., Minkley, J., Edwin, G., Lowry, G. V., & Tilton, R. D. (2010). Impact of nanoscale zero valent iron on geochemistry and microbial populations in trichloroethylene contaminated aquifer materials. Environmental Science and Technology, 44, 3474–3480.

    Article  CAS  Google Scholar 

  • Kotchaplai, P., Khan, E., & Vangnai, A. S. (2017). Membrane alterations in Pseudomonas putida F1 exposed to nanoscale zerovalent iron: effects of short-term and repetitive nZVI exposure. Environmental Science and Technology, 51, 7804–7813.

    Article  CAS  Google Scholar 

  • Lászlová, K., Dercová, K., Horváthová, H., Murínová, S., Škarba, J., & Dudášová, H. (2016). Assisted bioremediation approaches – biostimulation and bioaugmentation – used in the removal of organochlorinated pollutants from the contaminated bottom sediments. International Journal of Environmental Research, 10, 367–378.

    Google Scholar 

  • Lászlová, K., Dudášová, H., Olejníková, P., Horváthová, G., Velická, Z., Horváthová, H., & Dercová, K. (2018). The application of biosurfactants in bioremediation of the aged sediment contaminated with polychlorinated biphenyls. Water, Air, and Soil Pollution, 229, 219–235.

    Article  Google Scholar 

  • Le, T. T., Nguyen, K. H., Jeon, J. R., Francis, A. J., & Chang, Y. S. (2015). Nano/bio treatment of polychlorinated biphenyls with evaluation of comparative toxicity. Journal of Hazardous Materials, 287, 335–341.

    Article  CAS  Google Scholar 

  • Lefevre, E., Bossa, N., Wiesner, M. R., & Gunsch, C. K. (2016). A review of the environmental implications of in situ remediation by nanoscale zero valent iron (nZVI): behavior, transport and impacts on microbial communities. Science of the Total Environment, 565, 889–901.

    Article  CAS  Google Scholar 

  • Li, Z., Greden, K., Alvarez, P. J., Gregory, G. V., & Lowry, G. V. (2010). Adsorbed polymer and NOM limits adhesion and toxicity of nano scale zerovalent iron to E. coli. Environmental Science and Technology, 44, 3462–3467.

    Article  CAS  Google Scholar 

  • Liu, Y., & Lowry, G. V. (2006). Effect of particle age (Fe0 content) and solution pH on nZVI reactivity: H2 evolution and TCE dechlorination. Environmental Science and Technology, 40, 6085–6090.

    Article  CAS  Google Scholar 

  • Mills, S. A., Thal, D. I., & Barney, J. (2007). A summary of the 209 PCB congener nomenclature. Chemosphere, 68, 1603–1612.

    Article  CAS  Google Scholar 

  • Murínová, S., & Dercová, K. (2014). Potential use of newly isolated bacterial strain Ochrobactrum anthropi in bioremediation of polychlorinated biphenyls. Water, Air, and Soil Pollution, 225, 1980.

    Article  Google Scholar 

  • Rónavári, A., Balázs, M., Tolmacsov, P., Molnár, C., Kiss, I., Kukovec, Á., & Kónya, Z. (2016). Impact of the morphology and reactivity of nanoscale zero-valent iron (NZVI) on dechlorinating bacteria. Water Research, 95, 165–173.

    Article  Google Scholar 

  • Stefaniuk, M., Oleszczuk, P., & Ok, S. O. (2016). Review on nano zerovalent iron (nZVI): from synthesis to environmental applications. Chemical Engineering Journal, 287, 618–632.

    Article  CAS  Google Scholar 

  • Sun, Y. P., Li, X. Q., Cao, J., Zhang, W. X., & Wang, H. P. (2006). Characterization of nano zero valent iron nanoparticles. Advance in Colloid and Interface Science, 120, 47–56.

    Article  CAS  Google Scholar 

  • Taniyasu, S., Kannan, K., Holoubek, I., Ansorgova, A., Horii, Y., Hanari, N., Yamashita, N., & Aldous, K. M. (2003). Isomer-specific analysis of chlorinated biphenyls, naphthalenes and dibenzofurans in Delor: polychlorinated biphenyl preparations from the former Czechoslovakia. Environmental Pollution, 126, 169–178.

    Article  CAS  Google Scholar 

  • Wang, S., Zhao, M., Zhou, M., Li, Y. C., Wang, J., Gao, B., Sato, S., Feng, K., Yin, W., Igalvithana, A. D., Oleszczuk, P., Wang, X., & Ok, Y. S. (2019). Biochar-supported nZVI (nZVI/BC) for contaminant removal from soil and water: a critical review. Journal of Hazardous Materials, 373, 820–834.

    Article  CAS  Google Scholar 

  • Xie, Y., Dong, H., Zeng, G., Tang, L., Jiang, Z., Zhang, C., Deng, J., Zhang, L., & Zhang, Y. (2017). The interactions between nanoscale zero-valent iron and microbes in the subsurface environment. Journal of Hazardous Materials, 321, 390–407.

    Article  CAS  Google Scholar 

  • Zabetakis, K. M., Niño de Guzmán, G. T., Torrents, A., & Yarwood, S. (2015). Toxicity of zero-valent iron nanoparticles to a trichlorethylene-degrading groundwater microbial community. Journal of Environmental Science and Health, Part A, 50, 794–805.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Authors are grateful to NANO IRON, s.r.o. (Czech Republic) for nZVI nanoparticles.

Funding

This research was financially supported by the grants Scientific Grant Agency VEGA (1/0295/15) and Slovak Research and Development Agency APVV (0656-12) of the Ministry of Education, Science, Research and Sport of the Slovak Republic.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hana Horváthová.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Horváthová, H., Lászlová, K. & Dercová, K. Bioremediation vs. Nanoremediation: Degradation of Polychlorinated Biphenyls (PCBS) Using Integrated Remediation Approaches. Water Air Soil Pollut 230, 204 (2019). https://doi.org/10.1007/s11270-019-4259-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-019-4259-x

Keywords

Navigation