Skip to main content
Log in

Phosphorus budgets in Everglades wetland ecosystems: the effects of hydrology and nutrient enrichment

  • Original Paper
  • Published:
Wetlands Ecology and Management Aims and scope Submit manuscript

Abstract

The Florida Everglades is a naturally oligotrophic hydroscape that has experienced large changes in ecosystem structure and function as the result of increased anthropogenic phosphorus (P) loading and hydrologic changes. We present whole-ecosystem models of P cycling for Everglades wetlands with differing hydrology and P enrichment with the goal of synthesizing existing information into ecosystem P budgets. Budgets were developed for deeper water oligotrophic wet prairie/slough (‘Slough’), shallower water oligotrophic Cladium jamaicense (‘Cladium’), partially enriched C. jamaicense/Typha spp. mixture (‘Cladium/Typha’), and enriched Typha spp. (‘Typha’) marshes. The majority of ecosystem P was stored in the soil in all four ecosystem types, with the flocculent detrital organic matter (floc) layer at the bottom of the water column storing the next largest proportion of ecosystem P pools. However, most P cycling involved ecosystem components in the water column (periphyton, floc, and consumers) in deeper water, oligotrophic Slough marsh. Fluxes of P associated with macrophytes were more important in the shallower water, oligotrophic Cladium marsh. The two oligotrophic ecosystem types had similar total ecosystem P stocks and cycling rates, and low rates of P cycling associated with soils. Phosphorus flux rates cannot be estimated for ecosystem components residing in the water column in Cladium/Typha or Typha marshes due to insufficient data. Enrichment caused a large increase in the importance of macrophytes to P cycling in Everglades wetlands. The flux of P from soil to the water column, via roots to live aboveground tissues to macrophyte detritus, increased from 0.03 and 0.2 g P m−2 yr−1 in oligotrophic Slough and Cladium marsh, respectively, to 1.1 g P m−2 yr−1 in partially enriched Cladium/Typha, and 1.6 g P m−2 yr−1 in enriched Typha marsh. This macrophyte translocation P flux represents a large source of internal eutrophication to surface waters in P-enriched areas of the Everglades.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Baldwin DS, Mitchell AM (2000) The effects of drying and re-flooding on the sediment and soil nutrient dynamics of lowland river-floodplain systems: a synthesis. Regul Rivers: Res Manage 16:457–467

    Article  Google Scholar 

  • Brinson MM, Bradshaw HD, Kane ES (1984) Nutrient assimilative capacity of an alluvial floodplain swamp. J Appl Ecol 21:1041–1057

    Article  Google Scholar 

  • Brown SL (1978) A comparison of cypress ecosystems in the landscape of Florida. Ph.D Dissertation. University of Florida, Gainesville Florida, USA

  • Buzzelli CP, Childers DL, Dong Q, Jones RD (2000) Simulation of periphyton phosphorus dynamics in Everglades National Park. Ecol Model 134:103–115

    Article  CAS  Google Scholar 

  • Carpenter SR (1981) Submerged vegetation: an internal factor in lake ecosystem succession. The Am Nat 118:372–383

    Article  Google Scholar 

  • Carpenter SR, Caraco NF, Correll DL, Howarth RW, Sharpley AN, Smith VH (1998) Nonpoint pollution of surface waters with phosphorus and nitrogen. Ecol Appl 8:559–568

    Article  Google Scholar 

  • Carpenter SR, Cottingham KL (1997) Resilience and restoration of lakes. Conserv Ecol 1:2

    Google Scholar 

  • Chapin FS III, Barsdate RJ, Barel D (1978) Phosphorus cycling in Alaskan coastal tundra: a hypothesis for the regulation of nutrient cycling. Oikos 31:189–199

    Article  CAS  Google Scholar 

  • Chapin FS III, Walker BH, Hobbs RJ, Hooper DU, Lawton JH, Sala OE, Tilman D (1997) Biotic control over the functioning of ecosystems. Science 277:500–504

    Article  CAS  Google Scholar 

  • Childers DL, Doren RF, Jones R, Noe G, Rugge M, Scinto LJ (2003) Decadal change in vegetation and soil phosphorus patterns across the Everglades landscape. J Environ Qual 32:344–362

    PubMed  CAS  Google Scholar 

  • Childers DL, Boyer JN, Davis SE III, Madden CJ, Rudnick DT, Sklar FH (2006a) Nutrient concentration patterns in the oligotrophic “upside down” estuaries of the Florida Everglades. Limnol Oceanogr 51:602–616

    CAS  Google Scholar 

  • Childers DL, Iwaniec D, Rondeau D, Rubio G, Verdon E, Madden C (2006b). Primary productivity in Everglades marshes demonstrates the sensitivity of oligotrophic ecosystems to environmental drivers. Hydrobiologia 569:273–292

    Article  Google Scholar 

  • Craft CB, Richardson CJ (1993a) Peat accretion and N, P, and organic C accumulation in nutrient-enriched and unenriched Everglades peatlands. Ecol Appl 3:446–458

    Article  Google Scholar 

  • Craft CB, Richardson CJ (1993b) Peat accretion and phosphorus accumulation along a eutrophication gradient in the northern Everglades. Biogeochemistry 22:133–156

    Article  CAS  Google Scholar 

  • Craft CB, Richardson CJ (1998) Recent and long-term organic soil accretion and nutrient accumulation in the Everglades. Soil Sci Soc Am J 62:834–843

    Article  CAS  Google Scholar 

  • Daoust RJ, Childers DL (2004) Ecological effects of low-level phosphorus additions on two plant communities in a neotropical freshwater wetland ecosystem. Oecologia 141:672–686

    Article  PubMed  Google Scholar 

  • David PG (1996) Changes in plant communities relative to hydrologic conditions in the Florida Everglades. Wetlands 16:15–23

    Article  Google Scholar 

  • Davis, S.E. III, Childers DL, Noe GB (2006) The contribution of leaching to the rapid release of nutrients and carbon in the early decay of oligotrophic wetland vegetation. Hydrobiologia 569:87–97

    Article  CAS  Google Scholar 

  • Davis SM (1982) Patterns of radiophosphorus accumulation in the everglades after its introduction into surface water. February 1992. Technical Publication, South Florida Water Management District, West Palm Beach Florida, USA

    Google Scholar 

  • Davis SM (1991) Growth, decomposition, and nutrient retention in Cladium jamaicense Crantz and Typha domingensis Pers. in the Florida Everglades. Aquat Bot 40:203–224

    Article  Google Scholar 

  • Davis SM (1994) Phosphorous inputs and vegetation sensitivity in the Everglades. In: Davis SM, Ogden JC (eds) Everglades: the ecosystem and its restoration. St. Lucie Press, Delray Beach Florida, USA, pp357–378

    Google Scholar 

  • DeBusk W.F., Newman S, Reddy KR (2001) Spatio-temporal patterns of soil phosphorus enrichment in Everglades Water Conservation Area 2A. J Environ Qual 30:1438–1446

    PubMed  CAS  Google Scholar 

  • Dolan TJ, Bayley SE, Zoltek J Jr, Hermann AJ (1981) Phosphorus dynamics of a Florida freshwater marsh receiving treated wastewater. J Appl Ecol 18:205–219

    Article  CAS  Google Scholar 

  • Downing JA, McClain M, Twilley R, Melack JM, Elser J, Rabalais NN, Lewis WM Jr, Turner RE, Corredor J, Soto D, Yanez-Arancibia A, Kopaska JA, Howarth RW (1999) The impact of accelerating land-use change on the N-cycle of tropical aquatic ecosystems: current conditions and projected changes. Biogeochemistry 46:109–148

    Google Scholar 

  • Fisher MM, Reddy KR (2001) Phosphorus flux from wetland soils affected by long-term nutrient loading. J Environ Qual 30:261–271

    PubMed  CAS  Google Scholar 

  • Fitz HC, Sklar FH (1999) Ecosystem analysis of phosphorus impacts and altered hydrology in the Everglades: a landscape modeling approach. In: Reddy KR, O’Connor GA, Schelske CL (eds) Phosphorous biogeochemistry in subtropical ecosystems. Lewis Publishers, Boca Raton Florida, USA, pp 585–620

    Google Scholar 

  • Gaiser EE, Trexler J, Richards J, Childers D, Lee D, Edwards AL, Scinto L, Jayachandran K, Noe G, Jones R (2005) Cascading ecological effects of low-level phosphorus enrichment in the Florida Everglades. J Environ Qual 34:717–723

    Article  PubMed  CAS  Google Scholar 

  • Gaiser EE, Childers DL, Jones RD, Richards JH, Scinto LJ, Trexler JC (2006) Periphyton responses to eutrophication in the Florida Everglades: cross-system patterns of structural and compositional change. Limnol Oceanogr 51:617–630

    Google Scholar 

  • Gill RA, Jackson RB (2000) Global patterns of root turnover for terrestrial ecosystems. New Phytol 147:13–31

    Article  Google Scholar 

  • Gunderson LH (1994) Vegetation in the Everglades: determinants of community composition. In: Davis SM, Ogden JC (eds) Everglades: the ecosystem and its restoration. St. Lucie Press, Delray Beach Florida, USA, pp 323–340

    Google Scholar 

  • Harvey JW, Saiers JE, Newlin JT (2005) Solute transport and storage mechanisms in wetlands of the Everglades, South Florida. Water Resour Res 41:W05009

    Article  CAS  Google Scholar 

  • Heymans JJ, Ulanowicz RE, Bondavalli C (2002) Network analysis of the South Florida Everglades graminoid marshes and comparison with nearby cypress ecosystems. Ecol Model 49:5–23

    Article  Google Scholar 

  • Howard-Williams C (1985) Cycling and retention of nitrogen and phosphorus in wetlands: a theoretical and applied perspective. Freshwater Biol 15:391–431

    Article  CAS  Google Scholar 

  • Howarth R, Anderson D, Cloern J, Elfring C, Hopkinson C, Lapointe B, Malone T, Marcus N, McGlathery K, Sharpley A, Walker D (2000) Nutrient pollution of coastal rivers, bays, and seas. Issues in Ecology Number 7. Ecol Soc Am, Washington DC, USA

  • Hwang S-J, Havens KE, Steinman AD (1998) Phosphorus kinetics of planktonic and benthic assemblages in a shallow subtropical lake. Freshwater Biol 40:729–745

    Article  CAS  Google Scholar 

  • Inglett PW, Reddy KR, McCormick PV (2004) Periphyton tissue chemistry and nitrogenase activity in a nutrient impacted Everglades ecosystem. Biogeochemistry 67:213–233

    Article  CAS  Google Scholar 

  • Jobbágy EG, Jackson RB (2004) The uplift of soil nutrients by plants: biogeochemical consequences across scales. Ecology 85:2380–2389

    Google Scholar 

  • Johnston CA (1991) Sediment and nutrient retention by freshwater wetlands: effects on surface water quality. Crit Rev Environ Control 21:491–565

    Article  Google Scholar 

  • Kadlec RH (1999) Transport of phosphorus in wetlands. In: Reddy KR, O’Connor GA, Schelske CL (eds) Phosphorous biogeochemistry in subtropical ecosystems. Lewis Publishers, Boca Raton Florida, USA, pp 355–375

    Google Scholar 

  • Kadlec RH, Knight RL (1996) Treatment wetlands. Lewis Publishers, Boca Raton Florida, USA

    Google Scholar 

  • Lorenzen B, Brix H, Mendelssohn IA, McKee KL, Miao S (2001) Growth, biomass allocation and nutrient use efficiency in Cladium jamaicense and Typha domingensis as affected by phosphorus and oxygen availability. Aquat Bot 70:117–133

    Article  CAS  Google Scholar 

  • McCormick P, Chimney M, Swift D (1997) Diel oxygen profiles and water column community metabolism in the Florida Everglades, USA. Archives fur Hydrobiologie 140:117–129

    CAS  Google Scholar 

  • McCormick PV, O’Dell MB, Shuford RBE III, Backus JG, Kennedy WC (2001) Periphyton responses to experimental phosphorus enrichment in a subtropical wetland. Aquat Bot 71:119–139

    Article  CAS  Google Scholar 

  • McCormick PV, Newman S, Miao S, Gawlik DE, Marley D, Reddy KR, Fontaine TD (2002) Effects of anthropogenic phosphorus inputs on the Everglades. In: Porter JW, Porter KG (eds) The everglades, florida bay, and coral reefs of the florida keys: an ecosystem sourcebook. CRC Press, Boca Raton Florida, USA, pp 83–126

    Google Scholar 

  • Miao SL, DeBusk WF (1999) Effects of phosphorous enrichment on structure and function of sawgrass and cattail communities in the Everglades. In: Reddy KR, O’Connor GA, Schelske CL (eds) Phosphorous biogeochemistry in subtropical ecosystems. Lewis Publishers, Boca Raton Florida, USA, pp 275–299

    Google Scholar 

  • Mitsch MJ, Dorge CL, Wiemhoff JR (1979) Ecosystem dynamics and a phosphorus budget of an alluvial cypress swamp in southern Illinois. Ecology 60:1116–1124

    Article  Google Scholar 

  • Morris JT (1991) Effects of nitrogen loading on wetland ecosystems with particular reference to atmospheric deposition. Annu Rev Ecol Syst 22:257–279

    Article  Google Scholar 

  • National Research Council (1992) Restoration of aquatic ecosystems. National Academy Press, Washington DC, USA

    Google Scholar 

  • Newman S, Grace JB, Koebel JW (1996) Effects of nutrients and hydroperiod on Typha, Cladium, and Eleocharis: implications for Everglades restoration. Ecol Appl 6:774–783

    Article  Google Scholar 

  • Newman S, Kumpf H, Laing JA, Kennedy WC (2001) Decomposition responses to phosphorus enrichment in an Everglades (USA) slough. Biogeochemistry 54:229–250

    Article  CAS  Google Scholar 

  • Newman S, McCormick PV, Miao SL, Laing JA, Kennedy WC, O’Dell MB (2004) The effect of phosphorus enrichment on the nutrient status of a northern Everglades slough. Wetl Ecol Manage 12:63–79

    Article  CAS  Google Scholar 

  • Noe GB, Childers DL, Jones RD (2001) Phosphorus biogeochemistry and the impact of phosphorus enrichment: why is the Everglades so unique? Ecosystems 4:603–624

    Article  CAS  Google Scholar 

  • Noe GB, Childers DL, Edwards AL, Gaiser E, Jayachandran K, Lee DW, Meeder JF, Richards J, Scinto LJ, Trexler JC, Jones RD (2002) Short-term changes in phosphorus storage in an oligotrophic Everglades wetland ecosystem receiving experimental nutrient enrichment. Biogeochemistry 59:239–267

    Article  CAS  Google Scholar 

  • Noe GB, Harvey JW, Saiers JE (In press) Characterization of suspended particles in Everglades wetlands. Limnol Oceanogr

  • Noe GB, Scinto LJ, Taylor J, Childers DL, Jones RD (2003) Phosphorus cycling and partitioning in oligotrophic Everglades wetland ecosystem: a radioisotope tracing study. Freshwat Biol 48:1993–2008

    Article  CAS  Google Scholar 

  • Olde Venterink H, Pieterse NM, Belgers JDM, Wassen MJ, de Ruiter PC (2002) N, P, and K budgets along nutrient availability and productivity gradients in wetlands. Ecol Appl 12:1010–1026

    Article  Google Scholar 

  • Qualls RG, Richardson CsJ (2003) Factors controlling concentration, export, and decomposition of dissolved organic nutrients in the Everglades of Florida. Biogeochemistry 62:197–229

    Article  CAS  Google Scholar 

  • Reddy KR, DeLaune RD, DeBusk WF, Koch MS (1993) Long-term nutrient accumulation rates in the Everglades. Soil Sci Soc Am J 57:1147–1155

    Article  CAS  Google Scholar 

  • Reddy KR, Wang Y, DeBusk WF, Fisher MM, Newman S (1998) Forms of soil phosphorus in selected hydrologic units of the Florida Everglades. Soil Sci Soc Am J 62:1134–1147

    Article  CAS  Google Scholar 

  • Reddy KR, White JR, Wright A, Chua T (1999) Influence of phosphorus loading on microbial processes in the soil and water column of wetlands. In: Reddy KR, O’Connor GA, Schelske CL (eds) Phosphorous biogeochemistry in subtropical ecosystems. Lewis Publishers, Boca Raton Florida, USA, pp 249–273

    Google Scholar 

  • Rejmánková E (2001) Effect of experimental phosphorus enrichment on oligotrophic tropical marshes in Belize, Central America. Plant Soil 236:33–53

    Article  Google Scholar 

  • Richardson CJ, Marshall PE (1986) Processes controlling movement, storage, and export of phosphorus in a fen peatland. Ecolog Monogr 56:279–302

    Article  Google Scholar 

  • Richey JE (1983) The phosphorus cycle. In: Boli B, Cook RB (eds) The Major biogeochemical cycles and their interactions. Wiley, New York, USA, pp 51–56

    Google Scholar 

  • Rutchey K, Vilchek L (1999) Air photointerpretation and satellite imagery analysis techniques for mapping cattail coverage in a northern Everglades impoundment. Photogr Eng Rem Sens 65:185–191

    Google Scholar 

  • Saiers JE, Harvey JW, Mylon SE (2003) Surface-water transport of suspended matter through wetland vegetation of the Florida Everglades. Geophys Res Lett 30:1987

    Article  Google Scholar 

  • Schaffranek RW (2004) Sheet-flow velocities and factors affecting sheet-flow behavior of importance to restoration of the florida everglades. US Geological Survey Fact Sheet 2004–3123. US Geological Survey, Reston Virginia. USA

    Google Scholar 

  • Science Coordination Team (2003) The role of flow in the everglades ridge and slough landscape. South Florida Ecosystem Restoration Working Group, South Florida Ecosystem Restoration Task Force, Miami Florida, USA. http://www.sfrestore.org/sct/docs/index.htm

  • Scinto LJ (1997) Phosphorus cycling in a periphyton-dominated freshwater wetland. Ph.D. Dissertation. University of Florida, Gainesville Florida, USA

  • Shaver G, Bret-Harte MS, Jones MH, Johnstone J, Gough L, Laundre J, Chapin FS III (2001) Species composition interacts with fertilizer to control long-term change in tundra productivity. Ecology 82:3163–3181

    Article  Google Scholar 

  • Sklar F, McVoy C, VanZee R, Gawlik DE, Tarboton K, Rudnick D, Miao S, Armentano T (2001) Effects of altered hydrology on the ecology of the Everglades. In: Porter JW, Porter KG (eds) The everglades, Florida bay, and coral reefs of the Florida keys: an ecosystem sourcebook. CRC Press, Boca Raton Florida, USA, pp 39–82

    Google Scholar 

  • Smith VH (1998) Cultural eutrophication of inland, estuarine, and coastal waters. In: Pace ML, Groffman PM (eds) Successes, limitations, and frontiers in ecosystem science. Springer-Verlag, New York, USA, pp 7–49

    Google Scholar 

  • Søndergaard M, Jensen JP, Jeppesen E (2001) Retention and internal loading of phosphorus in shallow, eutrophic lakes. The Scientific World 1:427–442

    Google Scholar 

  • SFWMD (2003) Everglades consolidated report. South Florida Water Management District. West Palm Beach Florida, USA

    Google Scholar 

  • Sutula MA, Perez BP, Reyes E, Childers DL, Davis S, Day JW Jr, Rudnick D, Sklar F (2003) Factors affecting spatial and temporal variability in material exchange between the Southeastern Everglades wetlands and Florida Bay (USA). Estuarine, Coastal and Shelf Science. 57:757–781

    Article  CAS  Google Scholar 

  • Turner AM, Trexler JC, Jordan CF, Slack SJ, Geddes P, Chick JH, Loftus WF (1999) Targeting ecosystem features for conservation: standing crops in the Florida Everglades. Conserv Biol 13:898–911

    Article  Google Scholar 

  • Urban NH, Davis SM, Aumen NG (1993) Fluctuations in sawgrass and cattail densities in Everglades Water Conservation Area 2A under varying nutrient, hydrologic, and fire regimes. Aquat Bot 46:202–223

    Article  Google Scholar 

  • Vymazal J (1995) Algae and element cycling in wetlands. Lewis Publishers, Chelsea Michigan, USA

    Google Scholar 

  • Wang N, Mitsch WJ (2000) A detailed ecosystem model of phosphorus dynamics in created riparian wetlands. Ecolog Model 126:101–130

    Article  CAS  Google Scholar 

  • Wedin DA, Tilman D (1996) Influence of nitrogen loading and species composition on the carbon balance of grasslands. Science 274:1720–1723

    Article  PubMed  CAS  Google Scholar 

  • White JR, Reddy KR (1999) Influence of nitrate and phosphorus loading on denitrifying enzyme activity in Everglades wetland soils. Soil Sci Soc Am J 63:1945–1954

    Article  CAS  Google Scholar 

  • White JR, Reddy KR (2000) Influence of phosphorus loading on organic nitrogen mineralization of Everglades soils. Soil Sci Soc Am J 64:1525–1534

    Article  CAS  Google Scholar 

  • Wright AL, Reddy KR (2001) Heterotrophic microbial activity in northern Everglades wetland soils. Soil Sci Soc Am J 65:1856–1864

    Article  CAS  Google Scholar 

  • Yarbro LA (1983) The influence of hydrologic variations on phosphorus cycling and retention in a swamp stream ecosystem. In: Fontaine D, Bartell SM (eds) Dynamics of lotic ecosystems. Ann Arbor Science, Ann Arbor Michigan, USA, pp 223–245

    Google Scholar 

Download references

Acknowledgements

This material is based upon work supported by the National Science Foundation (DEB-9910514) under the Florida Coastal Everglades LTER Program, the Everglades Priority Ecosystem Science Initiative of the US Geological Survey, and the National Research Program of the US Geological Survey. We would like to thank Quan Dong, Evelyn Gaiser, Colin Saunders, Len Scinto, and Joel Trexler for sharing their data and their helpful comments on this research, and Changwoo Ahn, Paul McCormick, and the Wetlands Ecosystem Laboratory (Florida International University) for their review of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregory B. Noe.

Appendix

Appendix

Appendix 1 Observed mean masses of ecosystem components (AG = aboveground, BG = belowground), water depth, and soil bulk density used to parameterize the budgets for each ecosystem type. Floc depth is included in parentheses. References not included in the Literature Cited are presented in Appendix 3

Component

Slough

Cladium

Cladium/Typha

Typha

Periphyton (g dw m−2)

263a,c,e

84f,g

141f

65f,g

Floc (g dw m−2)

1686a,c (9.5 cm)

863c (6.1 cm)

795d

726c (6.9 cm)

Consumers (g dw m−2)

2.3a,h,i,j,k,l

1.3h,i

1.8k

2.2h,i,k

Macrophyte live AG (g dw m−2)

117a,m,n,o,p

790e,n,o,p,q,r,s

480m,r,s,t

681p,r,s

Macrophyte dead AG (g dw m−2)

85p

1269p,q

1121d

973p

Macrophyte live BG (g dw m−2)

520l,o

900m,o,s

183s,t

248s

Water depth (m)

0.52a,b,c

0.35c

0.55d

0.75c

Soil bulk density (g cm−3)

0.096a,c

0.069c,u,v

0.068u

0.064c,u,v

  1. aNoe et al. (2002)
  2. bNoe et al. (2003)
  3. cL. Scinto, Florida International University, unpublished data (WCA-1, -2A, -3B, Shark River Slough)
  4. dAssumed to be mean of Cladium and Typha ecosystem values
  5. eChiang et al. (2000)
  6. fE. Gaiser, Florida International University, unpublished data (WCA-1, -2A, -3B, Shark River Slough)
  7. gMcCormick et al. (1998)
  8. hTurner and Trexler (1997)
  9. iTurner et al. (1999)
  10. jLoftus and Eklund (1994)
  11. kJ. Trexler, Florida International University, unpublished data (WCA-1, -2A, -3B, Shark River Slough)
  12. lG. Noe, United States Geological Survey, unpublished data (Shark River Slough)
  13. mCraft et al. (1995)
  14. nDaoust and Childers (1999)
  15. oDaoust and Childers (2004)
  16. pChilders et al. (2003)
  17. qStewart and Ornes (1975)
  18. rDavis (1989)
  19. sMiao and Sklar (1998)
  20. tAssumed to be mean of Cladium and Typha biomass in Cladium/Typha ecosystem type
  21. uDeBusk et al. (1994)
  22. vNewman et al. (1997)

Appendix 2 Observed mean phosphorus concentrations in the different ecosystem components used to parameterize the budgets for each ecosystem type. AG = aboveground, BG = belowground. References not included in the Literature Cited are presented in Appendix 3

Component

Slough

Cladium

Cladium/Typha

Typha

Water (μg l−1)

10.4a

10.8a

42.3a

76.1a

Periphyton (μg g−1)

185b,c,d

211d,e,f,g

1031d,e,f,h,i

2264d,f

Floc (μg g−1)

444c,j

546j

1103k

1659j

Consumers (μg g−1)

Fish: 32,400l,m; Invertebrates: 12,100n,o,p,q,r

Macrophyte live AG (μg g−1)

332c,j,s,t,u

240s,u,v,w,x,y,z

649s,w,x,y,!,@

1597u,w,x,y

Macrophyte dead AG (μg g−1)

98#

79w,z,$

307w,z,$,@

325w,$

Macrophyte live BG (μg g−1)

152j

141x,y

550x,y

950x,y

Soil (μg g−1)

248c,j

397j,%,^

802%

1127j,%,^

  1. aNoe et al. (2001)
  2. bChiang et al. (2000)
  3. cNoe et al. (2002)
  4. dE. Gaiser, Florida International University, unpublished data (WCA−1, −2A, −3B, Shark River Slough)
  5. eGrimshaw et al. (1993)
  6. fMcCormick and O’Dell (1996)
  7. gScinto (1997)
  8. hVymazal et al. (1994)
  9. iPan et al. (2000)
  10. jL. Scinto, Florida International University, unpublished data (WCA−1, −2A, −3B, Shark River Slough)
  11. kassumed to be mean of Cladium and Typha ecosystem values
  12. lJ. Trexler, Florida International University, unpublished data (Shark River Slough)
  13. mStevenson and Childers (2004)
  14. nNakashima and Leggett (1980)
  15. oAndersen and Hessen (1991)
  16. pBriggs and Funge-Smith (1994)
  17. qBoyd and Teichert-Coddington (1995)
  18. rPenaflorida (1999)
  19. sCraft et al. (1995)
  20. tVaithiyanathan and Richardson (1998)
  21. uChilders et al. (2003)
  22. vSteward and Ornes (1975)
  23. wDavis (1991)
  24. xKoch and Reddy (1992)
  25. yMiao and Sklar (1998)
  26. zRichardson et al. (1999)
  27. !Richardson et al. (1997)
  28. @Asumed to be mean of Cladium and Typha biomass in Cladium/Typha ecosystem type
  29. #A. Edwards, Illinois Natural History Survey, unpublished data (Shark River Slough)
  30. $Miao and DeBusk (1999)
  31. %DeBusk et al. (1994)
  32. ^Newman et al. (1997)

Appendix 3

References in Appendices that were not cited in the Literature Cited.

Andersen T, Hessen DO (1991) Carbon, nitrogen, and phosphorus content of freshwater zooplankton. Limnol Oceanogr 36:807–814

Boyd CE, Teichert-Coddington DR (1995) Dry matter, ash and elemental composition of pond-cultured Penaeus vannamei and P. stylirostris. J World Aquat Soc 26:88–92

Briggs MRP, Funge-Smith SJ (1994) A nutrient budget of some intensive marine shrimp ponds in Thailand. Aquat Fish Manage 25:789–811

Chiang C, Craft CB, Rogers DW, Richardson CJ (2000) Effects of 4 years of nitrogen and phosphorus additions on Everglades plant communities. Aquat Bot 68:61–78

Craft CB, Vymazal J, Richardson CJ (1995) Response of Everglades plant communities to nitrogen and phosphorous additions. Wetlands 15:258–271

Daoust RJ, Childers DL (1999) Controls on emergent macrophyte composition, abundance, and productivity in freshwater Everglades wetland communities. Wetlands 19:262–275

Davis SM (1989) Sawgrass and cattail production in relation to nutrient supply in the Everglades. In: Sharitz RR, Gibbons JW (eds) Freshwater wetlands and wildlife. USDOE Office of Scientific and Technical Information, Oak Ridge Tennessee, USA, pp 325–341

DeBusk WF, Reddy KR, Koch MS, Wang Y (1994) Spatial distribution of soil nutrients in a northern Everglades marsh: water Conservation Area 2A. Soil Sci Soc Am J 58:543–552

Grimshaw HJ, Rosen M, Swift DR, Rodberg K, Noel JM (1993) Marsh phosphorous concentrations, phosphorous content and species composition of Everglades periphyton communities. Archiv fur Hydrobiologie 128:257–276

Koch MS, Reddy KR (1992) Distribution of soil and plant nutrients along a trophic gradient in the Florida Everglades. Soil Sci Soc Am J 56:1492–1499

Loftus WF, Eklund AM (1994) Long-term dynamics of an Everglades small-fish assemblage. In: Davis SM, Ogden JC (eds) Everglades: the ecosystem and its restoration. St. Lucie Press, Delray Beach Florida, USA, pp 461–483

McCormick PV, O’Dell MB (1996) Quantifying periphyton responses to phosphorus in the Florida Everglades: a synoptic-experimental approach. J North Am Benthol Soc 15:450–468

McCormick PV, Shuford RBE III, Backus JG, Kennedy WC (1998) Spatial and seasonal patterns of periphyton biomass and productivity in the northern Everglades, U.S.A. Hydrobiologia 362:185–208

Miao SL, Sklar FH (1998) Biomass and nutrient allocation of sawgrass and cattail along a nutrient gradient in the Florida Everglades. Wetl Ecol Manage 5:245–263

Nakashima BS, Leggett WC (1980) Natural sources and requirements of phosphorus for fishes. Can J Fish Aqua Sci 37:679–686

Newman S, Reddy KR, DeBusk WF, Wang Y, Shih G, Fisher MM (1997) Spatial distribution of soil nutrients in a northern Everglades marsh: water conservation area 1. Soil Sci Soc Am J 61:1275–1283

Pan Y, Stevenson RJ, Vaithiyanathan P, Slate J, Richardson CJ (2000) Changes in algal assemblages along observed and experimental phosphorus gradients in a subtropical wetland, U.S.A. Freshwater Biol 44:339–353

Peñaflorida VD (1999) Interaction between dietary levels of calcium and phosphorus on growth of juvenile shrimp, Penaeus monodon. Aquaculture 172:281–289

Richardson CJ, Ferrel GM, Vaithiyanathan P (1999) Nutrient effects on stand structure, resorption efficiency, and secondary compounds in Everglades sawgrass. Ecology 80:2182–2192

Richardson CJ, Qian S, Craft CB, Qualls RG (1997) Predictive models for phosphorus retention in wetlands. Wetl Ecol Manage 4:159–175

Stevenson C, Childers DL (2004) Patterns of fish decomposition in an oligotrophic freshwater Everglades marsh. Wetlands 24:529–537

Steward KK, Ornes WH (1975) The autecology of sawgrass in the Florida Everglades. Ecology 56:162–171

Turner A, Trexler JC (1997) Sampling invertebrates from the Florida Everglades: a comparison of alternative methods. J North Am Benthol Soc 16:694–709

Vaithiyanathan P, Richardson CJ (1998) Biogeochemical characteristics of the Everglades sloughs. J Environ Qual 27:1439–1450

Vymazal, J. Craft CB, Richardson CJ (1994) Periphyton response to nitrogen and phosphorus additions in Florida Everglades. Algol Studies 73:75–97

Rights and permissions

Reprints and permissions

About this article

Cite this article

Noe, G.B., Childers, D.L. Phosphorus budgets in Everglades wetland ecosystems: the effects of hydrology and nutrient enrichment. Wetlands Ecol Manage 15, 189–205 (2007). https://doi.org/10.1007/s11273-006-9023-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11273-006-9023-5

Keywords

Navigation