Skip to main content

Advertisement

Log in

Effect of cattle grazing on soil salinity and vegetation composition along an elevation gradient in a temperate coastal salt marsh of Samborombón Bay (Argentina)

  • Original Paper
  • Published:
Wetlands Ecology and Management Aims and scope Submit manuscript

Abstract

Salt marshes of Samborombón Bay (Argentina) have been grazed sporadically at very low stocking rates, but in the last decade, grazing intensity increased due to agriculture expansion. We investigated the effect of cattle grazing on vegetation and soil salinity on the most extended Spartina densiflora community. This community develops along an elevation gradient where the frequency and duration of tidal flooding and soil salinity increased as elevation decreased. Vegetation and soil data were collected from a national park excluded to cattle grazing for 30 years and from an adjacent commercial livestock farm continuously grazed by cattle. As elevation level decreased, plant cover, richness and diversity of functional groups and species decreased. As we expected, grazing altered soil salinity and vegetation composition in different extent along the elevation gradient. Grazing changed vegetation structure more intensively in the high elevation level because it reduced the competitive exclusion exerted by S. densiflora, allowing the increase in floristic richness. Grazing increased soil salinity and the contribution of salt-tolerant species only in the medium but not in the low elevation level probably because the higher frequency and duration of tidal flooding counterbalanced the increase in evaporation promoted by biomass removal in the low respect to the medium elevation level. While grazing may cause positive impacts for plant conservation in the high elevation level, it may cause negative consequence for livestock production because of the reduction in forage quality along the entire elevation gradient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Agnusdei MG (1991) Análisis de gradientes en suelos de áreas bajas de la Depresión del Salado [thesis]. Mar del Plata, Argentina: Facultad de Ciencias Agrarias, Universidad Nacional de Mar del Plata, p 109

  • Alconada M, Ansin OE, Lavado RS, Deregibus VA, Rubio G, Boem FHG (1993) Effect of retention of run-off water and grazing on soil and on vegetation of a temperate humid grassland. Agric Water Manag 23:233–246

    Article  Google Scholar 

  • Andresen H, Bakker JP, Brongers M, Heydemann B, Irmler U (1990) Long-term changes of salt marsh communities by cattle grazing. Plant Ecol 89:137–148

    Article  Google Scholar 

  • Bakker JP (1985) The impact of grazing on plant communities, plant populations and soil conditions on salt marshes. Plant Ecol 62:391–398

    Article  Google Scholar 

  • Bakker JP, Ruyter JC (1981) Effects of five years of grazing on a salt-marsh vegetation—a study with sequential mapping. Vegetatio 44:81–100

    Article  Google Scholar 

  • Barbier EB, Hacker SD, Kennedy C, Koch EW, Stier AC, Silliman BR (2011) The value of estuarine and coastal ecosystem services. Ecol Monogr 81:169–193

    Article  Google Scholar 

  • Bertness MD (1991) Zonation of Spartina patens and Spartina alterniflora in New England salt marsh. Ecology 72:138–148

    Article  Google Scholar 

  • Bertness MD, Ewanchuk PJ, Silliman BR (2002) Anthropogenic modification of New England salt marsh landscapes. Proc Natl Acad Sci USA 99:1395–1398

    Article  CAS  PubMed  Google Scholar 

  • Biondini M, Mielke PW, Berry KJ (1988) Data-dependent permutation techniques for the analysis of ecological data. Plant Ecol 75(3):161–168

    Google Scholar 

  • Boorman L (2003) Saltmarsh review: an overview of coastal saltmarshes, their dynamic and sensitivity characteristics for conservation and management. JNCC, Peterborough, p 132

    Google Scholar 

  • Bortolus A (2006) The austral cordgrass Spartina densiflora Brong.: its taxonomy, biogeography and natural history. J Biogeogr 33:158–168

    Article  Google Scholar 

  • Bortolus A, Iribarne O (1999) Effects of the SW Atlantic burrowing crab Chasmagnathus granulata on a Spartina salt marsh. Mar Ecol Prog Ser 178:79–88

    Article  Google Scholar 

  • Bos D, Bakker JP, Vries Yd, Lieshout Sv (2002) Long-term vegetation changes in experimentally grazed and ungrazed back-barrier marshes in the Wadden Sea. Appl Veg Sci 5:45–54

    Google Scholar 

  • Bouchard V, Tessier M, Digaire F, Vivier J-P, Valery L, Gloaguen J-C, Lefeuvre J-C (2003) Sheep grazing as management tool in Western European saltmarshes. C R Biol 326(1):148–157

    Article  Google Scholar 

  • Cagnoni MA (1999) Espartillares de la costa bonaerense de la República Argentina. Un caso de humedales costeros. In: Malvárez Al (ed) Tópicos sobre humedales subtropicales y templados de Sudamérica. Universidad de Buenos Aires, Programa sobre el Hombre y la Biosfera de la UNESCO, Montevideo, Uruguay, pp 55–69

    Google Scholar 

  • Cagnoni MA, Faggi A (1993) La vegetación de la Reserva de Vida Silvestre Campos del Tuyú. Parodiana 8:101–112

    Google Scholar 

  • Cahuepé MA, Hidalgo MG, Galatoire A (1985) Aplicación de índice de valoración zootecnica en pastizales de la Depresión del Salado. Revista Argentina de Producción Animal 5:681–690

    Google Scholar 

  • Cardoni DA, Isacch JP, Iribarne O (2007) Indirect effects of the intertidal burrowing crab Chasmagnathus granulatus in the habitat use of Argentina’s South West Atlantic salt marsh birds. Estuar Coast 30:382–389

    Article  Google Scholar 

  • Carol E, Kruse E, Pousa J (2008) Environmental hydrogeology of the southern sector of the Samborombón Bay wetland, Argentina. Environ Geol 54:95–102

    Article  CAS  Google Scholar 

  • Carol E, Kruse E, Mas-Pla J (2009) Hydrochemical and isotopical evidence of ground water salinization processes on the coastal plain of Samborombón Bay, Argentina. J Hydrol 365:335–345

    Article  CAS  Google Scholar 

  • Castillo JM, Fernandez-Baco L, Castellanos EM, Luque CJ, Figueroa EM, Davy AJ (2000) Lower limits of Spartina densiflora and S. maritima in a Mediterranean salt marsh determined by different ecophysiological tolerances. J Ecol 88:801–812

    Article  Google Scholar 

  • Chaneton EJ, Facelli JM, Leon RJC (1988) Floristic changes induced by flooding on grazed and ungrazed lowland grasslands in Argentina. J Range Manag 41:495–499

    Article  Google Scholar 

  • Chaneton EJ, Perelman SB, Omacini M, León RJC (2002) Grazing, environmental heterogeneity, and alien plant invasions in temperate pampa grasslands. Biol Invasions 4:7–24

    Article  Google Scholar 

  • Cingolani AM, Noy-Meir I, Díaz S (2005) Grazing effects on rangeland diversity: a synthesis of contemporary models. Ecol Appl 15:757–773

    Article  Google Scholar 

  • Cingolani AM, Noy-Meir I, Renison DD, Cabido M (2008) Is extensive livestock production compatible with biodiversity and soil conservation? [La ganadería extensiva, ¿es compatible con la conservación de la biodiversidad y de los suelos?]. Ecologia Austral 18:253–271

    Google Scholar 

  • Costa CSB, Marangoni JC, Azevedo AMG (2003) Plant zonation in irregularly flooded salt marshes: relative importance of stress tolerance and biological interactions. J Ecol 91:951–965

    Article  Google Scholar 

  • Cui B-S, He Q, An Y (2011) Community structure and abiotic determinants of salt marsh plant zonation vary across topographic gradients. Estuar Coast 34:459–469

    Article  CAS  Google Scholar 

  • Davy AJ, Bishop GF, Mossman H, Redondo-Gómez S, Castillo JM, Castellanos EM, Luque T, Figueroa ME (2006) Biological flora of the British Isles: Sarcocornia perennis (Miller) A.J. Scott. J Ecol 94:1035–1048

    Article  CAS  Google Scholar 

  • de Bello F, Leps J, Sebastia M-T (2006) Variations in species and functional plant diversity along climatic and grazing gradients. Ecography 29:801–810

    Article  Google Scholar 

  • de Bello F, Lavorel S, Gerhold P, Reier Ü, Pärtel M (2010) A biodiversity monitoring framework for practical conservation of grasslands and shrublands. Biol Conserv 143:9–17

    Article  Google Scholar 

  • Deregibus VA, Casal JJ, Jacobo E, Gibson D, Kauffman M, Rodriguez A (1994) Evidence that heavy grazing may promote the germination of Lolium multiflorum seeds via phytochrome-mediated perception of high red/far-red ratios. Funct Ecol 8:536–542

    Article  Google Scholar 

  • Deregibus VA, Jacobo EJ, Rodrígez AM (1995) Improvement in rangeland condition of the Flooding Pampa of Argentina through controlled grazing. Afr J Range For Sci 12:92–96

    Article  Google Scholar 

  • Drewry JJ, Cameron KC, Buchan GD (2008) Pasture yield and soil physical property responses to soil compaction from treading and grazing—a review. Aust J Soil Res 46:237–256

    Article  Google Scholar 

  • Dufrene M, Legendre P (1997) Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecol Monogr 67:345–366

    Google Scholar 

  • Fernandez GJ, Beade MS, Pujol EM, Mermoz ME (2004) Plan de manejo de la Reserva de Vida Silvestre “Campos del Tuyu”, General Lavalle, Provincia de Buenos Aires. Programa Pastizales Fundación Vida Silvestre Argentina con el apoyo de The Rufford Maurice Laing Foundation, p 144

  • Gedan KB, Silliman BR, Bertness MD (2009) Centuries of human-driven change in salt marsh ecosystems. Annu Rev Mar Sci 1:117–141

    Article  Google Scholar 

  • Gedan KB, Altieri AH, Bertness MD (2011) Uncertain future of New England salt marshes. Mar Ecol Prog Ser 434:229–237

    Article  Google Scholar 

  • Greenacre MJ (1984) Theory and applications of correspondence analysis. Academic Press, London

    Google Scholar 

  • Hassan FA, Ghaibeh AS (1977) Evaporation and salt movement in soils in the presence of water table. Soil Sci Soc Am J 41:470–478

    Article  CAS  Google Scholar 

  • Huan J, Xia H, Cai X (2006) Effects of shading on growth and photosynthesis of three species of the genus Stenotaphrum. Chin J Ecol 25:759–764

    Google Scholar 

  • Instituto de Botánica Darwinion (2011). http://www2.darwin.edu.ar/Principal.asp. Accessed 15 Sep 2012

  • INTA (1974–1975). Carta de Suelos de la República Argentina, Hoja 3757—10 y 4 Gral. Lavalle

  • Isacch J, Holz S, Ricci L, Martínez M (2004) Post-fire vegetation change and bird use of a salt marsh in coastal Argentina. Wetlands 24:235–243

    Article  Google Scholar 

  • Isacch JP, Costa CSB, Rodríguez-Gallego L, Conde D, Escapa M, Gagliardini DA, Iribarne OO (2006) Distribution of saltmarsh plant communities associated with environmental factors along a latitudinal gradient on the south-west Atlantic coast. J Biogeogr 33:888–900

    Article  Google Scholar 

  • Jackson JE, Giulietti JD (1988) The food habits of pampas deer Ozotoceros bezoarticus celer in relation to its conservation in a relict natural grassland in Argentina. Biol Conserv 45:1–10

    Article  Google Scholar 

  • Jacobo EJ, Rodríguez AM, Bartoloni N, Deregibus VA (2006) Rotational grazing effects on rangeland vegetation at a farm scale. Rangel Ecol Manag 59:249–257

    Article  Google Scholar 

  • Kleyer M, Feddersen H, Bockholt R (2003) Secondary succession on a high salt marsh at different grazing intensities. J Coast Conserv 9:123–134

    Article  Google Scholar 

  • Kneebone WR (1959) An evaluation of legumes for western Oklahoma rangelands. Bulletin B- 539. Agricultural Experiment Station, Oklahoma, State University, Stillwater

  • Koch EW, Barbier EB, Silliman BR, Reed DJ, Perillo GME, Hacker SD, Granek EF, Primavera JH, Muthiga N, Polasky S, Halpern BS, Kennedy CJ, Kappel CV, Wolasnski E (2009) Non-linearity in ecosystem services: temporal and spatial variability in coastal protection. Front Ecol Environ 7:29–37

    Article  Google Scholar 

  • Laegdsgaard P (2006) Ecology, disturbance and restoration of coastal saltmarsh in Australia: a review. Wetl Ecol Manag 14:379–399

    Article  Google Scholar 

  • Lavado RS, Taboada MA (1987) Soil salinization as an effect of grazing in a native grassland soil in the Flooding Pampa of Argentina. Soil Use Manag 3:143–148

    Article  Google Scholar 

  • Leendertse PC, Roozen AJM, Rozema J (1997) Long-term changes (1953–1990) in the salt marsh vegetation at the Boschplaat on Terschelling in relation to sedimentation and flooding. Plant Ecol 132:49–58

    Article  Google Scholar 

  • Lefeuvre JC, Bouchard V, Feunteun E, Grare S, Laffaille P, Radureau A (2000) European salt marshes diversity and functioning: the case study of the Mont Saint-Michel bay, France. Wetl Ecol Manag 8:147–161

    Article  CAS  Google Scholar 

  • León RJC (1975) Las comunidades herbáceas de la región Castelli-Pila. Monografías Comisión de Investigaciones Científicas 5:75–107

    Google Scholar 

  • León RJC, Burkart SE, Movia CP (1979) La vegetación de la República Argentina. Relevamiento fitosociológico del pastizal del norte de la Depresión del Salado (Partido de Magdalena y Brandsen, prov. de Bs.As.) Instituto Nacional de Tecnología Agropecuaria. Serie Fotogeográfica 17:11–93

    Google Scholar 

  • Lunt ID, Eldridge DJ, Morgan JW, Witt GB (2007) A framework to predict the effects of livestock grazing and grazing exclusion on conservation values in natural ecosystems in Australia. Aust J Bot 55:401–415

    Article  Google Scholar 

  • Magurran AE (2004) Measuring biological diversity. Blackwell Science, Oxford

    Google Scholar 

  • Mahibbur RM, Govindarajulu Z (1997) A modification of the test of Shapiro and Wilks for normality. J Appl Stat 24:219–235

    Article  Google Scholar 

  • McCune B, Mefford MJ (1998) PC-ORD: multivariate analysis of ecological data. MjM Software Design, Gleneden Beach

    Google Scholar 

  • Michener WK, Blood ER, Bildstein KL, Brinson MM, Gardner LR (1997) Climate change, hurricanes and tropical storms, and rising sea level in coastal wetlands. Ecol Appl 7:770–801

    Article  Google Scholar 

  • Miñaro F, Bilenca D (2008) The conservation status of temperate grasslands in central Argentina. Special report. Fundación Vida Silvestre Argentina, Buenos Aires, p 25

    Google Scholar 

  • Mueller-Dombois D, Ellemberg H (1974) Causal analytical inquiries into the origin of plant communities. In: Mueller-Dombois D, Ellemberg H (eds) Aims and methods of vegetation ecology. Wiley, New York, pp 335–337

    Google Scholar 

  • Naval Hydrographic Service (2008) Tide tables. Pub. H-610. Armada Argentina, Buenos Aires

  • Noy-Meir I, Kaplan Y (2002) Species richness of annual legumes in relation to grazing in Mediterranean vegetation in northern Israel. Isr J Plant Sci 50(SUPPL):S95–S109

    Article  Google Scholar 

  • Noy-Meir I, Gutman M, Kaplan Y (1989) Responses of Mediterranean grassland plants to grazing and protection. J Ecol 77(1):290–310

    Article  Google Scholar 

  • Pennings SC, Grant M-B, Bertness MD (2005) Plant zonation in low-latitude salt marshes: disentangling the roles of flooding, salinity and competition. J Ecol 93:159–167

    Article  Google Scholar 

  • Perelman SB, León RJC, Oesterheld M (2001) Cross-scale vegetation patterns of Flooding Pampa grasslands. J Ecol 89:562–577

    Article  Google Scholar 

  • Ramsar Convention Secretariat (2011) The Ramsar convention manual: a guide to the convention on wetlands (Ramsar, Iran, 1971), 5th edn. Ramsar Convention Secretariat, Gland

    Google Scholar 

  • Rhoades J (1982) Cation exchange capacity. In: Page AL, Miller RH, Keeney DR (eds) Methods of soil analysis, part 2, agronomy monographs 9. American Society of Agronomy, Madison, pp 149–157

    Google Scholar 

  • Rodríguez A, Jacobo E, Deregibus VA (1998) Germination behaviour of Italian ryegrass in flooding pampa rangelands. Seed Sci Res 8(4):521–528

    Article  Google Scholar 

  • Rosa García R, Celaya R, García U, Osoro K (2012) Goat grazing, its interactions with other herbivores and biodiversity conservation issues. Small Rumin Res 107:49–64

    Article  Google Scholar 

  • Rusch GM, Oesterheld M (1997) Relationship between productivity, and species and functional group diversity in grazed and non-grazed Pampas grassland. Oikos 78:519–526

    Article  Google Scholar 

  • Sala OE, Oesterheld M, León RJC, Soriano A (1986) Grazing effects upon plant community structure in subhumid grasslands of Argentina. Vegetatio 67:27–32

    Google Scholar 

  • Smith B, Wilson JB (1996) A consumer’s guide to evenness measures. Oikos 76:70–82

    Article  Google Scholar 

  • Snow AA, Vince SW (1984) Plant zonation in an Alaskan salt marsh: II. An experimental study of the role of edaphic conditions. J Ecol 72:669–684

    Article  Google Scholar 

  • Srivastava DS, Jefferies RL (1996) A positive feedback: herbivory, plant growth, salinity, and the desertification of an arctic salt-marsh. J Ecol 84:31–42

    Article  Google Scholar 

  • StatSoft Inc (2007) STATISTICA (data analysis software system) version 8.0. www.statsoft.com. Accessed 17 Dec 2012

  • Taboada MA (2006) Soil structural behaviour in flooded and agricultural soils of the argentine pampas. PhD Thesis, Institut National Polytechnique de Toulouse, France. http://ethesis.inp-toulouse.fr/archive/00000428/01/taboada.pdf. Accessed 23 June 2012

  • ter Braak CJF (1985) Correspondence analysis of incidence and abundance data: properties in terms of a unimodal response model. Biometrics 41:859–873

    Article  Google Scholar 

  • Tessier M, Vivier J-P, Ouin A, Gloaguen J-C, Lefeuvre J-C (2003) Vegetation dynamics and plant species interactions under grazed and ungrazed conditions in a western European salt marsh. Acta Oecol 24:103–111

    Article  Google Scholar 

  • Vervoorst FB (1967) Las comunidades vegetales de la depresión del Salado (Provincia de Buenos Aires), Instituto de Botánica Agrícola, p 262

  • Vila AR, Beade MS, Barrios Lamunière D (2008) Home range and habitat selection of pampas deer. J Zool 276:95–102

    Article  Google Scholar 

  • Vince SW, Snow AA (1984) Plant zonation in an Alaskan salt marsh: I. Distribution, abundance and environmental factors. J Ecol 72:651–667

    Article  Google Scholar 

  • Yu OT, Chmura GL (2010) Soil carbon may be maintained under grazing in a St Lawrence Estuary tidal marsh. Environ Conserv 36:312–320

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge Prof. Agustín Grimoldi for his helpful comments that greatly improved the original manuscript and Mario Beade, Director of the National Park Campos del Tuyú, for facilitating the access to the study site. This research was funded by UBACyT 0453 and FONCyT PICT 00463.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adriana M. Rodríguez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Di Bella, C.E., Jacobo, E., Golluscio, R.A. et al. Effect of cattle grazing on soil salinity and vegetation composition along an elevation gradient in a temperate coastal salt marsh of Samborombón Bay (Argentina). Wetlands Ecol Manage 22, 1–13 (2014). https://doi.org/10.1007/s11273-013-9317-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11273-013-9317-3

Keywords

Navigation