Skip to main content
Log in

Molecular approaches for identification and construction of novel insecticidal genes for crop protection

  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Summary

The insecticidal cry (crystal) genes from Bacillus thuringiensis (Bt) have been used for insect control both as biopesticides and in transgenic plants. Discovery of new insecticidal genes is of importance for delaying the development of resistance in target insects. The diversity of Bt strains facilitates isolation of new types of cry and vip (vegetative insecticidal protein) genes. PCR is a useful technique for quick and simultaneous screening of Bt strains for classification and prediction of insecticidal activities. PCR together with other methods of analysis such as RFLP, gene sequence determination, electrophoretic, immunological and chromatographic analysis of Cry proteins and insect bioassays for evaluation of toxicity have been employed for identification of new insecticidal proteins. Some other new approaches have also been devised. Many Bt strains with novel insecticidal genes have been found. A desired combination of Cry proteins can be assembled via site-specific recombination vectors into a recipient Bt strain to create a genetically improved biopesticide. For better pest control, the cry genes have been transferred to plants. Stacking of more than one insecticidal gene is required for resistance management in transgenic crops. Modification of Cry proteins through protein engineering for increasing the toxicity and/or the insecticidal spectrum is also a promising approach, but requires detailed understanding of the structure and function of these proteins and analysis of toxin-receptor interactions. More research into this area will provide useful insights for the design of toxins for management of insect resistance. Insecticidal genes from other bacteria and plants are also being examined for their potential for deployment in transgenic crops. Stringent implementation of resistance management is needed for maintaining the efficacy of Bt transgenic crops and deriving maximum economic and environmental benefit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adamczyk J.J., Hardee D.D., Adams L.C., Sumerford D.V., 2001 Correlating differences in larval survival and development of bollworm (Lepidoptera: Noctuidae) and fall armyworm (Lepidoptera: Noctuidae) to differential expression of Cry1A(c) delta-endotoxin in various plant parts among commercial cultivars of transgenic Bacillus thuringiensis cotton Journal of Economic Entomology 94:284–290

    CAS  Google Scholar 

  • Akhurst R.J., James W., Bird L.J., Beard C., 2003 Resistance to the Cry1Ac delta-endotoxin of Bacillus thuringiensis in the cotton bollworm, Helicoverpa armigera (Lepidoptera: Noctuidae) Journal of Economic Entomology 96:1290–1299

    CAS  Google Scholar 

  • Ammons D., Rampersad J., Khan A., 2002 Usefulness of staining parasporal bodies when screening for Bacillus thuringiensis Journal of Invertebrate Pathology 79:203–204

    Google Scholar 

  • Aronson A.I., Shai Y., 2001 Why Bacillus thuringiensis insecticidal toxins are so effective: unique features of their mode of action FEMS Microbiology Letters 195:1–8

    PubMed  CAS  Google Scholar 

  • Arora N., Ahmad T., Rajagopal R., Bhatnagar R.K., 2003. A constitutively expressed 36 kDa exochitinase from Bacillus thuringiensis HD-1 Biochemical and Biophysical Research Communications 307:620–625

    Article  PubMed  CAS  Google Scholar 

  • Avisar D., Keller M., Gazit E., Prudovsky E. Sneh B., Zilberstein A., 2004 The role of Bacillus thuringiensis Cry1C and Cry1E separate structural domains in the interaction with Spodoptera littoralis gut epithelial cells Journal of Biological Chemistry 279:15779–15786

    CAS  Google Scholar 

  • Ballester V., Granoro F., Tabashnik B.E., Malvar T., Ferre J., 1999 Integrative model for binding of Bacillus thuringiensis toxins in susceptible and resistant larvae of the diamondback moth (Plutella xylostella) Applied and Environmental Microbiology 65:1413–1419

    CAS  Google Scholar 

  • Bandyopadhyaya S., Roy A., Das S., 2001 Binding of garlic (Allium sativum) leaf lectin to the gut receptors of homopteran pests is correlated with its insecticidal activity Plant Science 161:1025–1033

    Article  Google Scholar 

  • Barboza-Corona J.E., Lopez Meza J.E., Ibarra J.E., 1998 Cloning and expression of the cry 1Ea4 gene of Bacillus thuringiensis at comparative toxicity of its gene product World Journal of Microbiology and Biotechnology 14:437–441

    Article  CAS  Google Scholar 

  • Barloy F., Delecluse A., Nicolas L., Lecadet M., 1996 Cloning and expression of the first anaerobic toxin gene from Clostridium bifermentas subsp. malasia, encoding a new mosquitocidal protein with homologies to Bacillus thuringiensis delta-endotoxins Journal of Bacteriology 178:3099–3105

    CAS  Google Scholar 

  • Barloy F., Lecadet M.M., Delecluse A., 1998 Cloning and sequencing of three new putative genes from Clostridium bifermentas CH18 Gene 211:293–299

    Article  PubMed  CAS  Google Scholar 

  • Barton K.A., Whiteley H.R., Yang N.S., 1987 Bacillus thuringiensis delta-endotoxin expressed in transgenic Nicotiana tabacum provides resistance to lepidopteran insects Plant Physiology 85:1103–1109

    Article  PubMed  CAS  Google Scholar 

  • Baum J.A., Kakefuda M., Gawron-Burke C., 1996 Engineering Bacillus thuringiensis bioinsecticide with an indigenous site specific recombination system Applied and Environmental Microbiology 62:4367–4373

    CAS  Google Scholar 

  • Baxter S.W., Zhao J.-Z., Gahan L.J., Shelton A.M., Tabashnik B.E., Heckel D.G., 2005 Novel genetic basis of field-evolved resistance to Bt toxins in Plutella xylostella Insect Molecular Biology 14:327–334

    CAS  Google Scholar 

  • Beard C.E. Ranasinghe C., Akhurst R.J., 2001 Screening for novel cry genes by hybridization Letters in Applied Microbiology33:241–245

    Article  PubMed  CAS  Google Scholar 

  • Beattie S.H., Halt C., Hirst D., Williams A.G., 1998 Discrimination among Bacillus cereus, Bacillus mycoides and Bacillus thuringiensis and some other species of the genus Bacillus by Fourier transform infrared spectroscopy FEMS Microbiology Letters 164:201–206

    PubMed  CAS  Google Scholar 

  • Bell H.A., Fitches E.C., Down R.E., Ford F., Marris G.C., Edwards J.P., Gatehouse J.A., Gatehouse A.M.R., 2001. Effect of dietary cowpea trypsin inhibitor (Cpti) on the growth and development of the tomato moth, Lacanobia oleracea (Lepidoptera: Noctuidae) and on the success of the gregarious ectoparasitoid, Eulophus pennicornis (Hymenoptera: Eulophydae) Pesticide Management Science 57:57–65

    Article  CAS  Google Scholar 

  • Ben-Dov E., Zaritsky A., Dahan E., Barak Z., Sinai R., Manasherob R., Khamraev A., Troitskaya E., Dubitsky A., Berezino N., Margalith Y., 1997 Extended screening by PCR for seven cry group genes from field collected strains of Bacillus thuringiensis Applied and Environmental Microbiology 63:2997–3002

    Google Scholar 

  • Ben-Dov E., Manasherob R., Zaritsky A., Barak Z., Margalith Y., 2001 PCR analysis of cry7 genes in Bacillus thuringiensis by the five conserved blocks of toxins Current Microbiology 42:96–99

    PubMed  CAS  Google Scholar 

  • Benedict J.H., Ring D.R., 2004 Transgenic crops expressing Bt proteins: current status, challenges and outlook. In: Koul O., Dhaliwal D.S., eds Transgenic Crop Protection: Concepts and Strategies.Enfield, NH: Science Publishers Inc. pp. 15–84. ISBN 1-57808-302-8

    Google Scholar 

  • Bernhard K., Jarrett P., Meadows M., Butt J., Ellis D.J., Roberts G.M., Pauli S., Rodgers P., Burges H.D., 1997 Natural isolates of Bacillus thuringiensis: worldwide distribution, characterization and activity against insect pests Journal of Invertebrate Pathology 70:59–68

    Google Scholar 

  • Bolter C.J., LatoszekGreen M., 1997. Effect of chronic ingestion of cysteine proteinase inhibitor, E-64, on Colorado potato beetle gut proteinases Entomological Experimental Applications 83:295–303

    Article  CAS  Google Scholar 

  • Bosch D., Schipper B., van der Kleij H., deMaagd R.A., Steikema W.J., 1994 Recombinant Bacillus thuringiensis crystal proteins with new properties: possibilities for resistance management Bio/Technology 12:915–918

    Article  PubMed  CAS  Google Scholar 

  • Bourque S.N., Valero J.R., Mercier J., Lavoie M.C., Levesque R.C., 1993. Multiplex polymerase chain reaction for detection and differentiation of the microbial insecticide Bacillus thuringiensis Applied and Environmental Microbiology 59:523–527

    CAS  Google Scholar 

  • Bowen D., Rocheleau T.A., Blackburn M., Andreev O., Golubeva E., Bhartia R., Ffrench-Constant R.H., 1998 Insecticidal toxins from the bacterium Photorhabdus luminescens Science 280:2129–2132

    Article  PubMed  CAS  Google Scholar 

  • Bravo A., 1997 Phylogenetic relationship of Bacillus thuringiensis delta endotoxin family proteins and their functional domains Journal of Bacteriology 179:2793–2801

    CAS  Google Scholar 

  • Bravo A., Jansens S., Peferoen M., 1992 Immunocytochemical characterization of Bacillus thuringiensis insecticidal crystal proteins in intoxicated insects Journal of Invertebrate Pathology 60:237–246

    CAS  Google Scholar 

  • Bravo A., Sarabia S., Lopez L., Ontiveros H., Abarca C., Ortiz A., Ortiz M., Lina L., Villalobos F.J., Pena G., 1998. Characterization of cry genes in a Mexican Bacillus thuringiensis strain collection Applied and Environmental Microbiology 64:4965–4972

    CAS  Google Scholar 

  • Brito L.O., Lopes A.R., Parra J.R.P., Terra W.R., Silva M.C., 2001. Adaptation of tobacco budworm Heliothis virescens to proteinase inhibitors may be mediated by the synthesis of new proteinases Comparative Biochemistry and Physiology B: Biochemistry and Molecular Biology128:365–375

    Article  CAS  Google Scholar 

  • Brousseau R., Saintonge A., Prefontaine G., Masson L., Cabana J., 1993 Arbitrary primer polymerase chain reaction – a powerful method to identify Bacillus thuringiensis serovar and strains Applied and Environmental Microbiology 59:114–119

    CAS  Google Scholar 

  • Burton S.L., Ellar D.J., Li J., Derbyshire D.J., 1999 N-acetylgalactosamine on the putative insect receptor aminopeptidase N is recognised by a site on the domain III lectin like fold of a Bacillus thuringiensis insecticidal toxin Journal of Molecular Biology 287:1011–1022

    Article  PubMed  CAS  Google Scholar 

  • Butko P., 2003 Cytolytic toxin CytA and its mechanism of membrane damage: data and hypotheses Applied and Environmental Microbiology 69:2415–2422

    CAS  Google Scholar 

  • Caprio M.A., 1998 Evaluating resistance management strategies for multiple toxins in the presence of external refuges Journal of Economic Entomology 91:1021–1031

    Google Scholar 

  • Caprio M.A., Suckling D.M., 2000 Simulating the impact of cross resistance between Bt toxins in transformed clover and apples in New Zealand Journal of Economic Entomology 93:173–179

    CAS  Google Scholar 

  • Carlson C.R., Kolsto A.B., 1993 A complete physical map of a Bacillus thuringiensis chromosome Journal of Bacteriology 175:1053–1060

    CAS  Google Scholar 

  • Carmona A.A., Ibarra J.E., 1999 Expression and crystallization of Cry 3Aa–Cry-IAc chimerical protein of Bacillus thuringiensis World Journal of Microbiology and Biotechnology 15:455–463

    CAS  Google Scholar 

  • Carozzi N.B., Kramer V.C., Warren G.W. Evola S., Koziel M.G., 1991 Prediction of insecticidal activity of Bacillus thuringiensis strains by polymerase chain reaction product profiles Applied and Environmental Microbiology 57:3057–3061

    CAS  Google Scholar 

  • Ceron J., Ortiz A., Quintero R., Bravo A., 1995 Specific primers directed to identify cryI and cryIII genes in a Bacillus thuringiensis strain collection Applied and Environmental Microbiology 61:3826–3831

    CAS  Google Scholar 

  • Chandra A., Ghosh P., Mandaokar A.D., Bera A.K., Sharma R.P., Das S., Kumar P.A., 1999 Amino acid substitution in α-helix 7 of Cry1Ac δ-endotoxin of Bacillus thuringiensis leads to enhanced toxicity to Helicoverpa armigera Hubner FEBS Letters 458:174–179

    Article  Google Scholar 

  • Chang L., Grant R., Aronson A., 2001 Regulation of the Packaging of Bacillus thuringiensis delta-endotoxins into inclusions Applied and Environmental Microbiology 67:5032–5036

    CAS  Google Scholar 

  • Charity J.A., Anderson M.A., Bittisnich D.J., Whitecross M., Higgins T.J.V., 1999. Transgenic tobacco and peas expressing a proteinase inhibitor from Nicotiana alata have increased insect resistance Molecular Breeding 5:357–365

    Article  CAS  Google Scholar 

  • Chattopadhyaya A., Bhatnagar N.B., Bhatnagar R., 2004 Bacterial insecticidal toxins Critical Reviews in Microbiology 30:33–54

    Google Scholar 

  • Chen F.-C., Shen L.-F., Chak K.-F., 2004 A facile analytical method for the identification of protease gene profiles from Bacillus thuringiensis strains Journal of Microbial Methods 56:125–132

    CAS  Google Scholar 

  • Chestukhina G.C., Kostina L.I., Mikahilova S.A., Tyurin F., Klepikova S., Stepanov M., 1994 Production of multiple endotoxins by Bacillus thuringiensis: endotoxins produced by strains of the subspecies galleriae and wuhanenesis Canadian Journal of Microbiology 40:1026–1034

    Article  PubMed  CAS  Google Scholar 

  • Chitra S., Narayanan R., Balakrishnan A., Jayaraman K., 1998 A rapid and specific method for the identification of Bacillus thuringiensis strains by indirect immunofluorescence Journal of Invertebrate Pathology 74:263–267

    Google Scholar 

  • Choi S.K., Shin B.S., Kong E.M., Rho H.M., Park S.H., 2000 Cloning of a new cry 1I-type crystal protein gene Current Microbiology 41:65–69

    Article  PubMed  CAS  Google Scholar 

  • Christov N.K., Imaishi H., Ohkawa H., 1999 Green-tissue-specific expression of a reconstructed cry1C gene encoding the active fragment of Bacillus thuringiensis delta-endotoxin in haploid tobacco plants conferring resistance to Spodoptera litura Biosciences Biotechnology and Biochemistry 63:1433–1444

    Article  CAS  Google Scholar 

  • Cody V., Luft J., Jensen E., Pangborn W., English L., 1992 Purification and crystallization of insecticidal delta endotoxin CryIII 2 from Bacillus thuringiensis proteins Structural and Functional Genetics 14:324–330

    Article  CAS  Google Scholar 

  • Crickmore N., Zeigler D.R., Feitelson J., Schnepf E., Van Rie J., Lereclus D., Baum J., Dean D.H., 1998. Revision of the nomenclature for the Bacillus thuringiensis pesticidal crystal proteins Microbiology and Molecular Biology Reviews 62:807–813

    CAS  Google Scholar 

  • Damgaard P.H., 1995 Diarrhoeal enterotoxin production by strains of Bacillus thuringiensis isolated from commercial Bacillus thuringiensis based insecticides FEMS Immunology and Medical Microbiology 12:245–250

    CAS  Google Scholar 

  • Datta K., Vasquez A., Tu J., Torrizo L., Alam M.F., Olivia N., Abrigo E., Khush, G.S., Datta S.K., 1998 Constitutive and tissue-specific differential expression of the cry1Ab gene in transgenic rice plants conferring resistance to rice insect pests Theoretical and Applied Genetics 97:20–30

    Article  CAS  Google Scholar 

  • De Cosa B., Moar W., Lee S.B., Miller M., Daniell H., 2001 Overexpression of the Bt cry2Aa2 operon in chloroplasts leads to formation of insecticidal crystals Nature Biotechnology 19:71–74

    Article  PubMed  Google Scholar 

  • De Leo F., Bonade-Bottino M.A., Ceci L.R., Gallerani R., Jouanin L., 2001. Effect of a mustard trypsin inhibitor expressed in different plants on three lepidopteran pests Insect Biochemistry and Molecular Biology 31:593–602

    Article  PubMed  Google Scholar 

  • De Leo F., Bonade-Bottino M.A., Ceci L.R., Gallerani R., Jouanin L., 1998. Opposite effects on Spodoptera littoralis larvae of high expression level of a trypsin proteinase inhibitor in transgenic plants Plant Physiology 118:997–1004

    Article  PubMed  Google Scholar 

  • deMaagd R.A., Bravo A., Berry C., Crickmore N., Schnepf H.E., 2003 Structure, diversity and evolution of protein toxins from spore-forming entomopathogenic bacteria Annual Reviews in Genetics 37:409–433

    Article  CAS  Google Scholar 

  • deMaagd R.A., Bravo A., Crickmore N., 2001 How Bacillus thuringiensis has evolved specific toxins to colonize the insect world Trends in Genetics 17:193–199

    Article  PubMed  CAS  Google Scholar 

  • deMaagd R.A., Wemen-Hendriks M., Steikema W., Bosch. D., 2000 Bacillus thuringiensis Delta-endotoxin Cry1C domain III can function as a specificity determinant for Spodoptera exigua in different but not all Cry1–Cry1C hybrids Applied and Environmental Microbiology 66:1559–1563

    CAS  Google Scholar 

  • deMaagd R.A., Bakker P.L., Masson L., Adang M.J., Sangadala S., Steikema W., Bosch D., 1999 Domain III of Bacillus thuringiensis delta endotoxin Cry1Ac is involved in binding to Manduca sexta brush border membranes and its purified amino peptidase N Molecular Microbiology 31:463–471

    Article  PubMed  CAS  Google Scholar 

  • Dichn S.H., Chiu E.L., De Rocher E.J., Green P.J., 1998. Premature adenylation at multiple sites within a Bacillus thuringiensis toxin gene coding region Plant Physiology 117:143–1443

    Google Scholar 

  • Donovan W.P., Donovan J.C., Engleman J.T., 2001 Gene knockout demonstrates that vip3A contributes to the pathogenesis of Bacillus thuringiensis toward Agrotis ipsilon and Spodoptera exigua Journal of Invertebrate Pathology 78:45–51

    CAS  Google Scholar 

  • Doss V.A., Kumar A., Jayakumar R., Sekar V., 2002 Cloning and expression of vegetative insecticidal protein (vip3V) gene of Bacillus thuringiensis in Escherichia coli Protein Expression and Purification 26:82–88

    Article  PubMed  CAS  Google Scholar 

  • Du J., Knowles B.H., Li J., Ellar D.J., 1999 Biochemical characterization of Bacillus thuringiensis cytolytic toxins in association with phospholipid bilayer Biochemical Journal 338:185–193

    Article  PubMed  CAS  Google Scholar 

  • Duan X., Li X., Xue Q., Abo-El-saad M., Xu D., Wu R., 1996. Transgenic rice plants harbouring an introduced potato proteinase inhibitor II gene are insect-resistant Nature Biotechnology 14:494–496

    Article  PubMed  CAS  Google Scholar 

  • Duan X., Gopalakrishnan B., Johnson L.B., White F.F., Wang X., Morgan T.D., Kramer K.J., Muthukrishnan S., 1998. Insect resistance of transgenic tobacco expressing an insect chitinase gene Transgenic Research 7:77–84

    Article  PubMed  Google Scholar 

  • Dubois N.R., Dean D.H., 1995. Synergism between Cry1A insecticidal crystal proteins and spores of Bacillus thuringiensis, other bacterial spores and vegetative cells against Lymantria dispar (Lepidoptera: Lymantriidae) larvae Environmental Entomology 24:1741–1747

    Google Scholar 

  • Ebinuma H., Sugita K., Matsunaga E., Yamakado M., 1997. Selection of marker-free transgenic plants using the isopentenyl transferase gene Proceedings of the National Academy Sciences USA 94:2117–2121

    Article  CAS  Google Scholar 

  • Edmonds H.S., Gatehouse L.N., Hilder V.A., Gatehouse J.A., 1996. The antimetabolic effects of oryzacystatin on larvae of the Southern corn rootworm (Diabrotica undecimpunctata howardi): use of a bacterial expression system for oryzacystatin Entomological Experimental Applications 78:83–94

    Article  CAS  Google Scholar 

  • Estela A., Escriche B., Ferre J., 2004 Interaction of Bacillus thuringiensis toxins with larval midgut binding sites of Helicoverpa armigera (Lepidoptera: Noctuidae) Applied and Environmental Microbiology 70:1378–1384

    CAS  Google Scholar 

  • Estruch J.J., Warren G.W., Mullins M.A., Nye G.J., Craig J.A., Koziel M.A., 1996 Vip3A, a novel Bacillus thuringiensis vegetative insecticidal protein with a wide spectrum of activities against lepidopteran insects Proceedings of the National Academy Sciences USA 93:5389–5394

    Article  CAS  Google Scholar 

  • Feitelson J.S., Payne J., Kim L., 1992. Bacillus thuringiensis insects and beyond Bio/Technology 10:271–275

    Article  Google Scholar 

  • Ffrench-Constant R.H., Bowen D.J., 2000 Novel insecticidal toxins from nematode-symbiotic bacteria Cellular and Molecular Life Sciences 57:828–833

    Article  PubMed  CAS  Google Scholar 

  • Flexner J.L., Belnavis D.L., 1999 Microbial insecticides. In Rechcigl J.E., Rechcigl N.A., eds. Biological and Biotechnological Control of Insect Pests, Boca Raton: Lewis Publishers. pp., 35–62. ISBN 1-56670-479-0

    Google Scholar 

  • Flores H., Soberon X., Sanchez J., Bravo A., 1997. Isolated domain II and III from the Bacillus thuringiensis Cry1Ab delta endotoxin binds to lepidopteran midgut membranes FEBS Letters 414:313–318

    Article  PubMed  CAS  Google Scholar 

  • Foissac X., Loc N.T., Christou P., Gatehouse A.M.R., Gatehouse J.A., 2000. Resistance to green leaf hopper (Nephotettix virescens) and brown plant hoper (Nilaparvata lugens) in transgenic rice expressing snowdrop lectin (Galanthus nivaslis agglutinin, GNA) Journal of Insect Physiology 46:573–583

    Article  PubMed  CAS  Google Scholar 

  • Forsyth G., Logan N.A., 2000 Isolation of Bacillus thuringiensis from northern Victoria land, Antarctica Letters in Applied Microbiology 30:263–266

    Article  PubMed  CAS  Google Scholar 

  • Franco O.L., Rigden D.J., Melo M.R., Grossi-De-Sa M.F., 2002. Plant alpha-amylase inhibitors and their interaction with insect alpha-amylases European Journal of Biochemistry 269:397–412

    Article  PubMed  CAS  Google Scholar 

  • Fujimoto H., Itoh K., Yamamoto M., Kayozuka J., Shimamoto K., 1993. Insect resistant rice generated by a modified delta-endotoxin gene of Bacillus thuringiensis Bio/Technology 11:1151–1155

    PubMed  CAS  Google Scholar 

  • Garcia-Robles I., Sanchez J., Gruppe A., Martinez-Ramirez A.C., Rausell C., Real M.D., Bravo A., 2001 Mode of action of Bacillus thuringiensis PS86Q3 strain in hymenopteran forest pests Insect Biochemistry and Molecular Biology 31:849–856

    Article  PubMed  CAS  Google Scholar 

  • Gatehouse A.M.R., Norton E., Davison G.M., Babbe S.M., Newell C.A., Gatehouse J.A., 1999. Digestive proteolytic activity in the larvae of tomato moth, Lacanobia oleracea: effect of plant protease inhibitors in vitro and in vivo Journal of Insect Physiology 45:545–558

    Article  PubMed  CAS  Google Scholar 

  • Gatehouse J.A., Gatehouse A.M.R., 1999. Genetic engineering of plants for insect resistance. In Rechcigl J.E., Rechcigl N.A., eds. Biological and Biotechnological Control of Insect Pests, Boca Raton: Lewis Publishers. pp.211–241. ISBN 1-56670-479-0

    Google Scholar 

  • Gaviria-Rivera A.M., Priest F.G., 2003 Molecular typing of Bacillus thuringiensis serovars by RAPD-PCR Systemic and Applied Microbiology 26:254–261

    Article  CAS  Google Scholar 

  • Gill M., Ellar D., 2002 Transgenic Drosophila reveals a functional in vivo receptor for the Bacillus thuringiensis toxin Cry1Ac1 Insect Molecular Biology 11:619–625

    CAS  Google Scholar 

  • Gill S.S., Cowles E.A., Pietrantonio P.V., 1992 The mode of action of Bacillus thuringiensis endotoxins Annual Review of Entomology 37:615–636

    Article  PubMed  CAS  Google Scholar 

  • Girard C., Le Metayer M., Zaccomer B., Barlet E., Williams L., Bonade-Bottino M., Pham-Delegue M.H., Jouanin L., 1998. Growth stimulation of beetle larvae reared on a transgenic oilseed rape expressing a cysteine proteinase inhibitor Journal of Insect Physiology 44:263–270

    Article  PubMed  CAS  Google Scholar 

  • Gleave A.P., Mitra D.S., Markwick N.P., Morris B.A.M., Bouning L.L., 1998 Enhanced expression of the Bacillus thuringiensis cry9Aa2 gene in transgenic plants by nucleotide sequence modification confers resistance to potato tubermoth Molecular Breeding 4:459–472

    Article  CAS  Google Scholar 

  • Gomez I., Dean D.H., Bravo A., Soboren M., 2003 Cadherin-like receptor binding facilitates proteolytic cleavage of helix alph-1 in domain I and oligomer pre-pore formation of Bacillus thuringiensis Cry1Ab toxin Biochemistry 42:10482–10489

    Article  PubMed  CAS  Google Scholar 

  • Gould F., 1998. Sustainability of transgenic insecticidal cultivars: integrating pest genetics and ecology Annual Review of Entomology 43:701–726

    Article  PubMed  CAS  Google Scholar 

  • Griffitts J.S., Whitacre J.L., Stevens D.E., Aroian R.V., 2001 Bt toxin resistance from loss of a putative carbohydrate-modifying enzyme Science 293:860–864

    Article  PubMed  CAS  Google Scholar 

  • Griffitts J.S., Huffman D.L., Whitacre J.L., Barrows B.D., Marroquin L.D., Muller R., Brown J.R., Hennet T., Esko J.D., Aroian R.V., 2003 Resistance to a bacterial toxin is mediated by removal of a conserved glycosylation pathway required for toxin–host interactions Journal of Biological Chemistry 278:45594–45602

    Article  PubMed  CAS  Google Scholar 

  • Griko N., Candas M., Zhang X., Junker M., Bulla L.A. Jr., 2004 Selective antaginism to the cadherin BT-R1 interferes with the calcium-induced adhesion of epithelial membrane vesicles Biochemistry 43:1393–1400

    Article  PubMed  CAS  Google Scholar 

  • Grochulski P., Masson L., Borisova S., Pusztai-Carry M., Schwartz R. Brousseau R., Cygler M., 1995 Bacillus thuringiensis CryIA(a) insecticidal toxin: crystal structure and channel formation Journal of Molecular Biology 254:447–464

    Article  PubMed  CAS  Google Scholar 

  • Gruden K., Strukelj B., Popovic T., Lenarcic B., Bevec T., Brzin J., Kregar I., Herzog-Velikonja J., Steikema W.J., Bosch D., Jongsma M.A., 1998. The cysteine protease activity of Colorado potato beetle (Leptinotarsa decemlineata Say) guts, which is insensitive to potato protease inhibitors, is inhibited by thyroglobulin type-1 domain inhibitors Insect Biochemistry and Molecular Biology 28:549–560

    Article  PubMed  CAS  Google Scholar 

  • Guerchicoff A., Delecluse A., Rubinstein C.P., 2001 The Bacillus thuringiensis cyt genes for hemolytic endotoxins constitute a gene family Applied and Environmental Microbiology 67:1090–1096

    CAS  Google Scholar 

  • Guihard G., Laprade R., Schwartz J.L., 2001 Unfolding affects insect cell permeabilization by Bacillus thuringiensis Cry1C toxin Biochimica et Biophysica Acta 1515:110–119

    PubMed  CAS  Google Scholar 

  • Hansen B.M., Damgaard P.H., Eilenberg J., Pederson J.C., 1998. Characterization of Bacillus thuringiensis isolated from leaves and insects Journal of Invertebrate Pathology 71:106–114

    CAS  Google Scholar 

  • Harsulkar A.M., Giri A.P., Patankar A.G., Gupta V.S., Sainani M.N., Ranjekar P.K., Deshpande V.V., 1999 Successive use of non-host plant proteinase inhibitors required for effective inhibition of Helicoverpa armigera gut proteinases and larval growth Plant Physiology 121:497–506

    CAS  Google Scholar 

  • Haq S.K., Atif S.M., Khan R.H., 2004 Protein proteinase inhibitor genes in combat against insects, pests and pathogens: natural and engineered phytoprotection Archives of Biochemistry and Biophysics 431:145–189

    Article  PubMed  CAS  Google Scholar 

  • Herrero S., Ferre J., Escriche B., 2001 Mannose phosphate isomerase isoenzymes in Plutella xylostella support common genetic bases of resistance to Bacillus thuringiensis toxins in Lepidopteran species Applied and Environmental Microbiology 67:979–981

    CAS  Google Scholar 

  • Hilder V.A., Gatehouse A.M.R., Sheerman M.E., Baker R.F., Boulter, D. 1987. A novel mechanism of insect resistance engineered into tobacco Nature 330:160–163

    CAS  Google Scholar 

  • Hofte H., Whiteley H.R., 1989 Insecticidal crystal proteins of Bacillus thuringiensis Microbiological Reviews 53:242–255

    CAS  Google Scholar 

  • Honee G., Convents D., Van Rie J. Jansens S., Peferoen M., Visser B., 1991. The carboxyl terminal domain of the toxic fragment of a Bacillus thuringiensis crystal protein determines receptor binding Molecular Microbiology 5:2799–2806

    PubMed  CAS  Google Scholar 

  • Houseman J.G., Larocque A.M., Thie N.M.R., 1991. Insect proteases, plant protease inhibitors and possible pest control Memoirs of the Entomological Society of Canada 159:3–11

    Google Scholar 

  • Hua G., Masson L., Jurat-Fuentes J.L., Schwab G., Adang M.J., 2001 Binding analyses of Bacillus thuringiensis Cry delta-endotoxins using brush border membrane vesicles of Ostrinia nubilalis Applied and Environmental Microbiology 67:872–879

    CAS  Google Scholar 

  • Hua G., Jurat-Fuentes J.L., Adang M.J., 2004 Flourescent-based assays establish Manduca sexta BtR1a Cadherin as a receptor for multiple Bt Cry1A toxin in Drosophila S2 cells Insect Biochemistry and Molecular Biology 34:193–202

    Article  PubMed  CAS  Google Scholar 

  • Huang J., Hu R., Rozelle S., Pray C., 2005 Insect-resistant GM rice in farmers’ fields: assessing productivity and health effects in China Science 308:688–690

    Article  PubMed  CAS  Google Scholar 

  • Hwang S.H., Saitoh H., Mizuki E., Higuch K., Ohba M., 1998. A novel class of mosquitocidal delta endotoxin Cry19B encoded by a Bacillus thuringiensis serovar higo gene Systematic and Applied Microbiology 21:179–184

    PubMed  CAS  Google Scholar 

  • Ingle S.S., Trivedi N., Prasad R., Kuruvila J., Rao K.K., Chatpar H.S., 2001 Aminopeptidase-N from the Helicoverpa armigera (Hubner) brush border membrane vesicles as a receptor of Bacillus thuringiensis Cry1Ac δ-endotoxin Current Microbiology 43:255–259

    Article  PubMed  CAS  Google Scholar 

  • Ishimoto M., Sato J., Chrispeels M.J., Kitamura K., 1996. Bruchid resistance of transgenic azuki bean expressing seed α-amylase inhibitor in the common bean Entomological Experimental Applications 79:309–315

    Article  CAS  Google Scholar 

  • Itoua-Apoyolo C., Drif L., Vassal J.M., De Barjac H., Bossy J.P., Leclant F., Frutos R., 1996 Isolation of multiple species of Bacillus thuringiensis from a population of the European Sunflower moth, Homoeosoma nebulella Applied and Environmental Microbiology 61:4343–4347

    Google Scholar 

  • Jalali S.K., Mohan K.S., Singh S.P., Manjunath T.M., Lalitha Y., 2004 Baseline-susceptibility of the old-world bollworm, Helicoverpa armigera (Hubner) (Lepidoptera: Noctuidae) populations from India to Bacillus thuringiensis Cry1Ac insecticidal protein Crop Protection 23: 53–59

    Article  CAS  Google Scholar 

  • James, C. 2004 Global view of commercialized transgenic crops: 2004. ISAAA (International Service for Acquisition of Agri-biotech Applications), Brief no., 32 Preview, Ithaca, New York, ISBN 1-892456-36-2. http://www.isaaa.org/publications/briefs/Brief_32.htm

  • Jermutus L., Honeger A., Schwesinger F., Hanes J., Pluckthun A., 2001. Tailoring in vitro evolution for protein affinity or stability Proceedings of the National Academy Sciences USA 98:75–80

    Article  CAS  Google Scholar 

  • Johnson C., Bishop A.H., Turner C.L., 1998 Isolation and activity of strains of Bacillus thuringiensis toxic to larvae of the housefly (Diptera: Muscidae) and tropical blowflies (Diptera: Calliphoridae) Journal of Invertebrate Pathology 71:138–144

    Google Scholar 

  • Johnson R., Narvaez J., An G., Ryan C., 1989. Expression of proteinase inhibitors I and II in transgenic tobacco plants: effects of natural defence against Manduca sexta larvae Proceedings of the National Academy Sciences USA 86:9871–9875

    CAS  Google Scholar 

  • Jongsma M.A., Bakker P.L., Peters J., Bosch D., Steikema W.J., 1995. Adaptation of Spodoptera exigua larvae to the plant proteinase inhibitors by induction of gut proteinase activity insensitive to inhibition Proceedings of the National Academy Sciences USA 92:8041–8045

    CAS  Google Scholar 

  • Joshi B.N., Sainani M.N., Bastawade K.B., Deshpande V.V., Gupta V.S., Ranjekar P.K., 1999. Pearl millet cysteine proteinase inhibitor – evidence for the presence of two distinct sites responsible for antifungal and antifeedant activities European Journal of Biochemistry 265:556–563

    Article  PubMed  CAS  Google Scholar 

  • Joung K.B., Cote J.C., 2001 Phylogenetic analysis of Bacillus thuringiensis serovars based on 16S rRNA gene restriction fragment length polymorphisms Journal of Applied Microbiology 90:115–122

    CAS  Google Scholar 

  • Juarez-Perez V.M., Ferrandis M.D., Frutos R., 1997 PCR based approach for detection of novel Bacillus thuringiensis cry genes Applied and Environmental Microbiology 63:2997–3002

    PubMed  CAS  Google Scholar 

  • Jung Y.C., Kim S.U., Cote J.C., Lecadet M.M., Chung Y.S., Bok S.H., 1998. Characterization of a new Bacillus thuringiensis subsp. Rigo strain isolated from rice bran in Korea Journal of Invertebrate Pathology 71:95–96

    Google Scholar 

  • Jurat-Fuentes J.L., Adang M.J., 2001 Importance of Cry1 delta-endotoxin domain II loops for binding specificity in Heliothis virescens (L.) Applied and Environmental Microbiology 67:323–329

    CAS  Google Scholar 

  • Kalman S., Kiehne K.L., Libs J.L., Yamamoto T., 1993. Cloning of a novel cryIC-type gene from a strain of Bacillus thuringiensis subsp. galleriae Applied and Environmental Microbiology 59:1131–1137

    CAS  Google Scholar 

  • Kasman L.M., Lukowiak A.A., Garczynski S.F., McNall R.J. Youngman P., Adang M.J., 1998. Phage display of a biologically active Bacillus thuringiensis toxin Applied and Environmental Microbiology 64:2995–3003

    CAS  Google Scholar 

  • Kaur, S. 2002 Potential for development of novel Bacillus thuringiensis strains and transgenic crops and their implications for Indian agriculture AgBiotechNet 4: ABN 088, pp. 1–10. http://www.agbiotechnet.com CAB International

  • Kaur S., Singh A., 2000a Distribution of Bacillus thuringiensis isolates in different soil types from North India Indian Journal of Ecology 27: 52–60

    Google Scholar 

  • Kaur S., Singh A., 2000b Natural occurrence of Bacillus thuringiensis in leguminous phylloplanes in the New Delhi region of India World Journal of Microbiology and Biotechnology 16:679–682

    Article  Google Scholar 

  • Kaur S., 2000 Molecular approaches towards development of novel Bacillus thuringiensis biopesticides World Journal of Microbiology and Biotechnology 16:781–793

    CAS  Google Scholar 

  • Kaur S., 2004 Ecological, economic and social perspectives on transgenic crop protection: path for the developing world. In Koul O., Dhaliwal D.S., eds. Transgenic Crop Protection: Concepts and strategies. Enfield, NH: Science Publishers Inc. pp. 373–405. ISBN 1-57808-302-8

    Google Scholar 

  • Kaur S., Gujar G.T., 2004 Contemporary approaches for genetically engineered insect resistant transgenic crops. In Dhaliwal G.S., Singh R., eds. Host Plant Resistance to Insects: Concepts and Applications. New Delhi: Panima Publishing Corporation. pp. 492–516. ISBN 81-86535-49-7

    Google Scholar 

  • Kaur S., Rai R., Singh A., 2004 Role of transgenic microbes and endophytes in crop protection. In Koul O., Dhaliwal D.S., eds. Transgenic Crop Protection: Concepts and Strategies. Enfield, New Hampshire: Science Publishers Inc. pp. 289–306. ISBN 1-57808-302-8

    Google Scholar 

  • Khanna H.K., Raina S.K., 2002. Elite indica transgenic plants expressing modified Cry 1Ac endotoxin of Bacillus thuringiensis show enhanced resistance to yellow stem borer (Scirpophaga incertulas) Transgenic Research 11:411–423

    Article  PubMed  CAS  Google Scholar 

  • Kim H.S., Li M.S., 2001 Molecular cloning of a new crystal protein gene cry1Af1 of Bacillus thuringiensis NT0423 from Korean Sericultural Farms Current Microbiology 43:408–413

    Article  PubMed  CAS  Google Scholar 

  • Kim H.S., Saitoh H., Yamashita S., Akao T., Park Y.S., Maeda M., Tanaka R., Mizuki E., Ohba M., 2003 Cloning and characterization of two novel crystal protein genes from a Bacillus thuringiensis serovar Dakota strain Current Microbiology 46:33–46

    CAS  Google Scholar 

  • Koiwa H., Bressan R.A., Hasegawa P.M., 1997. Regulation of protease inhibitors and plant defense Trends in Plant Sciences 2:379–384

    Google Scholar 

  • Kota M., Daniell H., Varma S., Garczynski S.F., Gould F., Moar W.J., 1999 Overexpression of the Bacillus thuringiensis (Bt) Cry2Aa2 protein in chloroplasts confers resistance to plants against susceptible and Bt-resistant insects Proceedings of the National Academy of Sciences USA 96:1840–1845

    Article  CAS  Google Scholar 

  • Koziel M.G., Beland G.L., Bowman C., Carozzi N.B., Crenshaw R., Crossland L., Dawson J., Desai N., Hill M., Kadwell S., Launis K., Maddox D., McPherson K., Meghji M.R., Merlin E., Rhodes R., Warren G.W., Wright M., Evola S.V., 1993. Field performance of elite transgenic maize plants expressing an insecticidal protein derived from Bacillus thuringiensis BioTechnology 11:194–200

    Article  CAS  Google Scholar 

  • Kronstad J.W., Whiteley H.R., 1986 Three classes of homologous Bacillus thuringiensis crystal protein genes Gene 43:29–40

    Article  PubMed  CAS  Google Scholar 

  • Kumar A.S.M., Aronson A.I., 1999 Analysis of mutations in the pore-forming region essential for insecticidal activity of a Bacillus thuringiensis δ-endotoxin Journal of Bacteriology 181:6103–6107

    PubMed  CAS  Google Scholar 

  • Kumar P.A., Mandaokar A., Sreenivasu K., Chakrabarti S.K., Bisaria S., Sharma S.R., Kaur S., Sharma R.P., 1998 Insect resistant transgenic brinjal plants Molecular Breeding 4:33–37

    Article  CAS  Google Scholar 

  • Kumar S., Udaisuriyan V., Sangeetha P., Bharathi M., 2004 Analysis of Cry2A proteins encoded by genes cloned from indigenous isolates of Bacillus thuringiensis for toxicity against Helicoverpa armigera Current Science 86:566–570

    CAS  Google Scholar 

  • Kumar H., Kumar V., 2004 Tomato expressing Cry1Ab insecticidal proteins from Bacillus thuringiensis protected against tomato fruit borer Helicoverpa armigera (Hubner) (Lepidoptera: Noctuidae) damage in laboratory, greenhouse and field Crop Protection 23:135–139

    Article  CAS  Google Scholar 

  • Kuo W.S., Chak K.F., 1996. Identification of novel cry type genes from Bacillus thuringiensis strains on the basis of restriction fragment length polymorphism of the PCR amplified DNA Applied and Environmental Microbiology 62:1369–1377

    CAS  Google Scholar 

  • Lecadet M.M., Franchon E., Dumanoir V.C., Ripoteau H., Hamon S., Laurent P., Thiery I., 1999 Updating the H-antigen classification of Bacillus thuringiensis Journal of Applied Microbiology 86:660–672

    Article  PubMed  CAS  Google Scholar 

  • Lee M.K., Aguda R.M., Cohen M.B., Gould F.L., Dean D.H., 1997 Determination of binding of Bacillus thuringiensis endotoxin receptors to rice stem borer midguts Applied and Environmental Microbiology 63:583–586

    Google Scholar 

  • Lee M.K., Walters F.S., Hart H., Palekar N., Chen J.-S., 2003 The mode of action of the Bacillus thuringiensis vegetative insecticidal protein Vip3A differs from that of Cry1Ab δ-endotoxin Applied and Environmental Microbiology 69:4648–4657

    CAS  Google Scholar 

  • Lereclus D., Mahillon J., Menou G., Lecadet M.M., 1986. Identification of Tn 4430, a transposon of Bacillus thuringiensis functional in Escherichia coli Molecular and General Genetics 204:52–57

    Article  PubMed  CAS  Google Scholar 

  • Letourneau D.K., Hagen VII J.A., Robinson G.S., 2002 Bt crops: evaluating benefits under cultivation and risks from escaped transgenes in the wild. In Letourneau D.K., Burrows B.E., Eds. Genetically Engineered Organisms. Boca Raton: CRC Press, pp 33–98. ISBN 0-8493-0439-3

    Google Scholar 

  • Li H., Gonzalez-Cabrera J., Opert B., Ferre J., Higgins R.A., Suschman L.L., Radke G.A., Zhu K.Y., Huang F., 2004 Binding analysis of Cry1Ab and Cry1Ac with membrane vesicles from Bt resistant and susceptible Ostrinia nubilalis Biochemical and Biophysical Research Communications 323:52–57

    Article  PubMed  CAS  Google Scholar 

  • Li J., Caroll J., Ellar D.J., 1991. Crystal structure of insecticidal δ-endotoxin from Bacillus thuringiensis at 2.5 Å resolution Nature 353:815–821

    CAS  Google Scholar 

  • Li J., Koni P.A., Ellar D.J., 1996 Structure of the mosquitocidal δ-endotoxin cytB from Bacillus thuringiensis sp. kyushuensis and implications for membrane pore formation Journal of Molecular Biology 257:129–152

    Article  PubMed  CAS  Google Scholar 

  • Lovgren A., Carlson C.R., Eskils K., Kolsto A.B., 1998. Localization of putative virulence genes on a physical map of the Bacillus thuringiensis subsp. gelechiae chromosome Current Microbiology 37:245–250

    Article  PubMed  CAS  Google Scholar 

  • Malone L.A., Pham-Delegue M.H., 2001. Effects of transgene products on honey bees (Apis mellifera) and Bumble bees (Bombus sp.) Apidologie 32:287–304

    Article  CAS  Google Scholar 

  • Martin P., Travers R., 1989. Worldwide abundance and distribution of Bacillus thuringiensis isolates Applied and Environmental Microbiology 55:2437–2442

    Google Scholar 

  • Masson L., Erlandson M., Puzstai-Carey M., Brousseau R., Juarez-Perez V., Frutos R., 1998. A holistic approach for determining the entomopatho potential of Bacillus thuringiensis strains Applied and Environmental Microbiology 64:4782–4788

    CAS  Google Scholar 

  • Marroquin L.D., Elyssnia D., Griffitts J.S., Feitelson J.S., Aroian R.V., 2000 Bacillus thuringiensis (Bt) toxin susceptibility and isolation of resistance mutants in the nematode Ceanorhabditis elegans Genetics 155:1693–1699

    PubMed  CAS  Google Scholar 

  • McClintock J.T., VanBeek N.A.M., Kough J.L., Mendelsohn M.L., Hutton P.O., 1999 Regulatory aspects of biological control agents and products derived by biotechnology. In: Rechcigl J.E., Rechcigl N.A., eds. Biological and Biotechnological Control of Insect Pests Boca Raton: Lewis Publishers. pp. 305–357. ISBN 1-56670-479-0

    Google Scholar 

  • McNall R.J., Adang M.J., 2003 Identification of novel Cry1Ac binding proteins in Manduca sexta midgut through proteomic analysis Insect Biochemistry and Molecular Biology 33:999–1010

    Article  PubMed  CAS  Google Scholar 

  • Meadows M.P., Ellis D.J., Butt J., Jarrett P., Burges H.D., 1992 Distribution, frequency and diversity of Bacillus thuringiensis in an animal feed mill Applied and Environmental Microbiology 58:1344–1350

    Google Scholar 

  • Mehlo L., Gahakwa D., Nghia P.T., Loc N.T., Capell T., Gatehouse J.A., Gatehouse A.M., Christou P., 2005 An alternative strategy for sustainable pest resistance in genetically enhanced crops Proceedings of the National Academy of Sciences USA 102:7812–7816

    Article  CAS  Google Scholar 

  • Michaud D., Nguyenquoc B., Yelle S., 1993 Selective inhibition of Colorado potato beetle cathepsin-H by oryzacystatin I and oryzacystatin II FEBS Letters 331:173–176

    Article  PubMed  CAS  Google Scholar 

  • Miranda R., Zamudio F.Z., Bravo A., 2001 Processing of Cry1Ab delta-endotoxin from Bacillus thuringiensis by Manduca sexta and Spodoptera frugiperda midgut proteases: role in protoxin activation and toxin inactivation Insect Biochemistry and Molecular Biology 31:1155–1163

    Article  PubMed  CAS  Google Scholar 

  • Moellenbeck D.J., Peters M.L., Bing J.W., Rouse J.R., Higgins L.S., Sims L., Nevshemal T., Marshall L., Ellis R.T., Bystrak P.G., Lang B.A., Stewart J.L., Kouba K., Sondag B., Gustafson B., Nour K., Xu D., Swenson J., Zhang J., Czapla T., Schwab G., Jayne S., Stockhoff B.A., Narva K., Schnepf H.E., Stelman S.J., Poutre C., Koziel M., Duck N., 2001 Insecticidal proteins from Bacillus thuringiensis protected corn from corn rootworms Nature Biotechnology 19:668–672

    Article  PubMed  CAS  Google Scholar 

  • Monsanto Company, 2002 Insect efficacy testing with Bollgard®II cotton. Public interest document submitted to EPA. Monsanto Co., Saint Louis, MO, USA

  • Morin S., Biggs R.W., Sisterson M.S., Shriver L., Ellere-Kirk C., Higginson D., Holley D., Gahan L.J., Heckel D.G., Carriere Y., Dennehy T.J., Brown J.K., Tabashnik B.E., 2003 Three cadherin alleles associated with resistance to Bacillus thuringiensis in pink bollworm Proceedings of the National Academy of Sciences USA 100:5004–5009

    Article  CAS  Google Scholar 

  • Morris-Coole C., 1995 Bacillus thuringiensis: ecology, the significance of natural genetic modification and regulation World Journal of Microbiology and Biotechnology 11:471–477

    Article  Google Scholar 

  • Naimov S., Weemen-Hendriks M., Dukiandjiev S., de Maagd R.A., 2001 Bacillus thuringiensis delta-endotoxin Cry1 hybrid proteins with increased activity against the Colorado potato beetle Applied and Environmental Microbiology 67:5328–5330

    CAS  Google Scholar 

  • Naimov S., Dukiandjiev S., de Maagd R.A., 2003 A hybrid Bacillus thuringiensis delta-endotoxin gives resistance against a coleopteran and a lepidopteran pest in transgenic potato Plant Biotechnology Journal 1:51–57

    CAS  Google Scholar 

  • Okumura S., Akao T., Mizuki E., Ohba M., Inouye K., 2001 Screening of the Bacillus thuringiensis Cry1Ac delta-endotoxin on the artificial phospholipid monolayer incorporated with brush border membrane vesicles of Plutella xylostella by optical biosensor technology Journal of Biochemical and Biophysical Methods 47:177–188

    CAS  Google Scholar 

  • Orr G.L., Strickland J.A., Walsh T.A., 1994. Inhibition of diabrotica larval growth by a multicystatin from potato tubers Journal of Insect Physiology 40:893–900

    Article  CAS  Google Scholar 

  • Park H.W., Frederici B.A., 2004 Effect of specific mutations in helix alpha7 of domain I on the stability and crystallization of Cry3A in Bacillus thuringiensis Molecular Biotechnology 27:89–100

    Article  PubMed  CAS  Google Scholar 

  • Perlak F.J., Deaton R.W., Armstrong T.A., Fuchs R.L., Sims S.R., Greenplate J.T., Fischoff D.A., 1990. Insect resistant cotton plants Bio/Technology 8:939–943

    Article  PubMed  CAS  Google Scholar 

  • Perlak F.J., Stone T.B., Muskopf Y.N., Petersen L.J., Parker G.B., Mcpherson S.A., Wyman J., Love S., Reed. G., Biever D., Fischoff D.A., 1993. Genetically improved potatoes: protection from damage by Colorado potato beetles Plant Molecular Biology 22:313–321

    Article  PubMed  CAS  Google Scholar 

  • Peyronnet O., Nieman B., Genereux F., Vachon V., Laprade R., Schwartz J.L., 2004 Estimation of the radius of the pores formed by the Bacillus thuringiensis Cry1C δ-endotoxin in planar lipid bilayers Biochimica et Biophysica Acta 1567:113–122

    Google Scholar 

  • Powell K.S., Spence J., Bharathi M., Gatehouse J.A., Gatehouse A.M.R., 1998. Immunohistochemical and developmental studies to elucidate the mechanism of action of the snow drop lectin on the rice brown planthopper, Nilaparvata lugens (Stal.) Journal of Insect Physiology 44:529–539

    Article  PubMed  CAS  Google Scholar 

  • Pueyo J.J., Morgan T.D., Ameenuddin N., Liang C., Reeck G.R., Chrispeels M.J., Kramer K.J., 1995. Effects of bean and wheat alpha-amylase inhibitors on alpha amylase activity and growth of stored-product insect pests Entomological Experimental Applications 75:237–244

    Article  CAS  Google Scholar 

  • Rajagopal R., Agrawal N., Selvapandiyan A., Sivakumar S., Ahmad S., Bhatnagar R.K., 2003 Recombinantly expressed isoenzymic aminopeptidases from Helicoverpa armigera (American cotton bollworm) midgut display differential interaction with closely related Bacillus thuringiensis insecticidal proteins Biochemical Journal 370:971–978

    PubMed  CAS  Google Scholar 

  • Rajamohan F., Alzate O., Cotrill J.A., Curtiss A., Dean D.H., 1996. Protein engineering of Bacillus thuringiensis δ-endotoxin mutations at domain II of CryIAb enhance receptor affinity and toxicity towards gypsy moth larvae Proceedings of the National Academy Sciences of the USA 93:14338–14343

    Article  CAS  Google Scholar 

  • Ramachandran S., Buntin G.D., All J.N., Tabashnik B.E., Reymer P.L., Adang M.J., Pulliam D.A., Steward C.N. Jr., 1998 Survival, development and oviposition of resistant diamondback moth (Lepidoptera: Plutellidae) on transgenic canola toxin Journal of Economic Entomology 91:1239–1244

    Google Scholar 

  • Ramesh S., Nagadhara D., Reddy V.D., Rao K.V., 2004 Production of transgenic indica rice resistant to yellow stem borer and sap-sucking insects using super-binary vectors of Agrobacterium Plant Science 166:1077–1085

    Article  CAS  Google Scholar 

  • Ranasinghe C., Akhurst R.J., 2002 Matrix associated laser desorption ionization time of flight mass spectrometry (MALDi-TOF MS) for detecting novel Bt toxins Journal of Invertebrate Pathology 79:51–58

    CAS  Google Scholar 

  • Rang C., Vacon V., Maagd R.A., Villon M., Schwartz J.-L., Bosch D., Frutos R., Laprade R., 1999 Interaction between functional domains of Bacillus thuringiensis insecticidal crystal proteins Applied and Environmental Microbiology 65:2918–2925

    CAS  Google Scholar 

  • Rang C., Vachon V., Coux F., Carret C., Moar W.J., Brousseau R., Schwartz J.L., Laprade R., Frutos R., 2001 Exchange of domain I from Bacillus thuringiensis Cry1 toxins influences protoxin stability and crystal formation Current Microbiology 43:1–6

    Article  PubMed  CAS  Google Scholar 

  • Rao K.V., Rathore K.S., Hodges T.K., Fu X., Stoger E.F., Sudhakar D., Williams S., Christou P., Bharathi M., Bown D.P., Powell K.S., Spence J., Gatehouse A.M.R., Gatehouse J.A., 1998. Expression of snowdrop lectin (GNA) in transgenic rice plants confers resistance to rice brown plant hopper Plant Journal 15:469–477

    Article  PubMed  CAS  Google Scholar 

  • Rausell C., Garcia-Robles I., Munoz-Garay C., Martinez-Raminez A.C., Real M.D., Bravo A., 2004 Role of toxin activation on binding and pore formation activity of the Bacillus thuringiensis Cry3 toxins in membranes of Leptinotarsa decemlineata (Say) Biochimica et Biophysica Acta 1660:99–105

    PubMed  CAS  Google Scholar 

  • Roush R., 1997 Managing resistance to transgenic crops. In Carozzi N., Koziel M.G., eds. Advances in Insect Control: The Role of Transgenic Plants, London: Taylor and Francis. pp. 271–294. ISBN 0748404171

    Google Scholar 

  • Sampson M.N., Gooday G.W., 1998. Involvement of chitinases of Bacillus thuringiensis during pathogenesis in insects Microbiology 144:2189–2194

    CAS  Google Scholar 

  • Sanchis V., Agaisse H., Chaufaux J., Lereclus D., 1997 A recombinase mediated system for elimination of antibiotic resistance gene markers from genetically engineered Bacillus thuringiensis strains Applied and Environmental Microbiology 63:779–784

    CAS  Google Scholar 

  • Sanchis V., Gohar M., Chaufaux J., Arantes O., Meier A., Agaisse H., Cayley J., Lereclus D., 1999 Development and field performance of a broad-spectrum nonviable asporogenic recombinant strain of Bacillus thuringiensis with greater potency and UV resistance Applied and Environmental Microbiology 65:4032–4039

    CAS  Google Scholar 

  • Saxena D., Stewart C.N., Altosaar I., Shu Q., Stotzky G., 2004 Larvicidal Cry proteins from Bacillus thuringiensis are released in root exudates of transgenic Bacillus thuringiensis canola, cotton and tobacco Plant Physiology and Biochemistry 42:383–387

    CAS  Google Scholar 

  • Sayyed A.H., Crickmore N., Wright D.J., 2001 Cyt1Aa from Bacillus thuringiensis subsp. israelensis is toxic to the diamondback moth, Plutella xylostella, and synergizes the activity of Cry1Ac towards a resistant strain Applied and Environmental Microbiology 67:5859–5861

    CAS  Google Scholar 

  • Schnepf E., Crickmore N., Van Rie J., Lereclus D., Baum J., Feitelson J., Zeigler D.R., Dean D.H., 1998 Bacillus thuringiensis and its pesticidal crystal proteins Microbiology and Molecular Biology Reviews 62:775–806

    CAS  Google Scholar 

  • Schroeder H.E., Gollasch S., Moore A., Tabe L.M., Craig S., Hardie D.C., Chrispeels M.J., Spencer D., Higgins T.J.V., 1995. Bean alpha-amylase inhibitor confers resistance to pea weevil (Bruchus pisorum) in transgenic peas (Pisum sativum L.) Plant Physiology 107:1233–1239

    PubMed  CAS  Google Scholar 

  • Selvapandiyan A., Arora N., Rajagopal R., Jalali S.K., Venkatesan T., Singh S.P., Bhatnagar R.K., 2001 Toxicity analysis of N- and C-terminus-deleted vegetative insecticidal protein from Bacillus thuringiensis Applied and Environmental Microbiology 67:5855–5858

    CAS  Google Scholar 

  • Shade R.E., Schroeder H.E., Pueto J.J., Tabe L.M., Murdock L.L., Higgins T.J.V., Chrispeels M.J., 1994. Transgenic pea seeds expressing the alpha amylase inhibitor of the common bean are resistant to the bruchid beetles Bio/Technology 12:793–796

    Article  CAS  Google Scholar 

  • Shao Z., Cui Y., Liu X., Yi H., Ji J., Yu Z., 1998 Processing of delta endotoxin of Bacillus thuringiensis subsp. kurstaki HD01 in Heliothis armigera midgut juice and the effect of protease inhibitors Journal of Invertebrate Pathology 72:73–81

    CAS  Google Scholar 

  • Sharma H.C., Sharma K.K., Seetharama N., Ortiz R., 2000. Prospects for using transgenic resistance to insects in crop improvement Electronic Journal of Biotechnology 3:1–27

    Google Scholar 

  • Shelton A.M., Tang J.D., Roush R.T., Metz T.D., Earle E.D., 2000 Field tests on managing resistance to Bt-engineered plants Nature Biotechnology 18:339–342

    Article  PubMed  CAS  Google Scholar 

  • Shelton A.M., Zhao J.Z., Roush R.T., 2002 Economic, ecological, food safety, and social consequences of the deployment of Bt transgenic plants Annual Review of Entomology 47:845–881

    Article  PubMed  CAS  Google Scholar 

  • Shinkawa A., Yaoi K., Kadotani T., Imamura M., Koizumi N., Iwahana. H., Sato R., 1999 Binding of phylogenetically distant Bacillus thuringiensis Cry toxins to a Bombyx mori aminopeptidase N suggests importance of Cry toxin’s conserved structure in receptor binding Current Microbiology 39:14–20

    Article  PubMed  CAS  Google Scholar 

  • Siegel J.P., 2001 The mammalian safety of Bacillus thuringiensis-based insecticides Journal of Invertebrate Pathology 77:13–21

    CAS  Google Scholar 

  • Smedley D.P., Ellar D.J., 1996 Mutagenesis of three surface exposed loops of a Bacillus thuringiensis insecticidal toxin reveals residues important for toxicity, receptor recognition and possibly membrane insertion Microbiology 142:1617–1624

    CAS  Google Scholar 

  • Smith R., Couche G., 1991. The phylloplane as a source of Bacillus thuringiensis variants Applied and Environmental Microbiology 57:311–315

    Google Scholar 

  • Smith R.A., Barry J.W. 1998 Environmental persistence of Bacillus thuringiensis spores following aerial application Journal of Invertebrate Pathology 71:263–267

    CAS  Google Scholar 

  • Soberon M., Perez R.V., Nunez-Valdez M.E., Lorence A., Gomez I., Sanchez J., Bravo A., 2000 Evidence for intermolecular interaction as a necessary step for pore-formation activity and toxicity of Bacillus thuringiensis Cry1Ab toxin FEMS Microbiology Letters 191:221–225

    Article  PubMed  CAS  Google Scholar 

  • Song F., Zhang J., Gu A., Wu Y., Han L., He K., Chen Z., Yao J., Hu Y., Li G., Huang D., 2003 Identification of cry1I-type genes from Bacillus thuringiensis strains and characterization of a novel cry1I-type gene Applied and Environmental Microbiology 69:5207–5211

    CAS  Google Scholar 

  • Stewart C.N. Jr., Richards IV H.A., Halfhill M.D., 2000 Transgenic plants and biosafety: science, misconceptions and public perceptions Biotechniques 29:832–836 838–843

    PubMed  CAS  Google Scholar 

  • Stobdan T., Kaur S., Singh A., 2004 Cloning and nucleotide sequence of a novel cry gene from Bacillus thuringiensis Biotechnology Letters 26:1153–1156

    Article  PubMed  CAS  Google Scholar 

  • Stotzky G., 2002 Release, persistence and biological activity in soil of insecticidal proteins from Bacillus thuringiensis. In Letourneau D.K., Burrows B.E., eds. Genetically Engineered Organisms, Boca Raton: CRC Press. pp. 187–222. ISBN 0-8493-0439-3

    Google Scholar 

  • Syngenta, 2003 Syngenta plans to introduce a new choice for transgenic control of worms in cotton. http://www.syngentacropprotection-us.com/media/article.asp?article id=303

  • Tabashnik B.E., Carriere Y., Dennchy T.J., Morin S., Sisterson M.S., Roush R.E., Shelton A.M., Zhao J.Z., 2003 Insect resistance to transgenic Bt crops: lessons from the laboratory and the field Journal of Economic Entomology 96:1031–1038

    CAS  Google Scholar 

  • Tabashnik B.E., Biggs R.W., Higginson D.M., Henderson S., Unnithan D.C., Unnithan G.C., Elers-Kirk C., Sisterson M.S., Dennehy T.J., Carriere Y., Shai M., 2005 Association between resistance to Bt cotton and cadherin genotype in pink bollworm Journal of Economic Entomology 98:635–644

    Google Scholar 

  • Theunis W., Aguda R.M., Cruz W.T., Decock C., Peferoen M., Lambert B., Bottrell D.G., Gould T., Lalsinger J.A., Cohen M.B., 1998 Bacillus thuringiensis isolates from the Philippines. Habitat distribution, δ-endotoxin diversity and toxicity to rice stem borers (Lepidoptera: Pyralidae) Bulletin of Entomology Research 88:335–342

    Article  CAS  Google Scholar 

  • Thomas J.C., Adams D.G., Keppene V.D., Wasmann C.C., Brown J.K., Kanost M.R., Bohnert H.J., 1995. Manduca sexta encoded protease inhibitors expressed in Nicotiana tabacum provide protection against insects Plant Physiology and Biochemistry 33:611–614

    CAS  Google Scholar 

  • Thompson M.A., Schnepf H.E., Feitelson J.S., 1995 Structure, function and engineering of Bacillus thuringiensis toxins. In Setlow J.K., ed. Genetic Engineering: Principles and Methods 17 New York: Plenum Press. pp. 99–117. ISBN 0-30645071-2

    Google Scholar 

  • Ticknor L.O., Kolsto A.B., Hill K.K., Keim P., Laker M.T., Tonks M., Jackson P.J., 2001 Fluorescent amplified fragment length polymorphism analysis of Norwegian Bacillus cereus and Bacillus thuringiensis soil isolates Applied and Environmental Microbiology 67:4863–4873

    CAS  Google Scholar 

  • Tigue N.J., Jacoby J., Ellar D.J., 2001 The alpha-helix 4 residue, Asn135, is involved in the oligomerization of Cry1Ac1 and Cry1Ab5 Bacillus thuringiensis toxins Applied and Environmental Microbiology 67:5715–5720

    CAS  Google Scholar 

  • Tinjuangjun, P. 2002 Snow drop lectin in transgenic plants: its potential for Asian agriculture. http://www.agbiotechnet.com ABN 091, CAB International, Wallingford, UK

  • Tounsi S., Zouari N., Jaoua S., 2003 Cloning and study of the expression of a novel cry1Ia-type gene from Bacillus thuringiensis subsp. kurstakiJournal of Applied Microbiology 95:23–28

    Article  PubMed  CAS  Google Scholar 

  • Tu J., Zhang G., Datta K., Xu C., He Y., Zhang Q., Khush G.S., Datta S.K., 2000 Field performance of transgenic elite commercial hybrid rice expressing Bacillus thuringiensis δ-endotoxin Nature Biotechnology 18:1101–1104

    Article  PubMed  CAS  Google Scholar 

  • Tuli R., Bhatia C.R., Singh P.K., Chaturvedi R., 2000 Release of insecticidal transgenic crops and gap area in developing approaches for more durable resistance Current Science 79:163–169

    Google Scholar 

  • Uemura T., Ihara H., Wadana A., Himeno M., 1992 Fluorimetric of assay potential change of Bombyx mori midgut brush border membrane induced by δ-endotoxin from Bacillus thuringiensis Biosciences Biotechnology and Biochemistry 56:1976–1979

    Article  CAS  Google Scholar 

  • Uribe D., Martinez W., Cerón J., 2003. Distribution and diversity of cry genes in native strains of Bacillus thuringiensis obtained from different ecosystems from Colombia Journal of Invertebrate Pathology 82:119–127

    CAS  Google Scholar 

  • van der Salm T., Bosch D., Honee G., Feng L., Munsteman E., Bakker P., Steikema W.J., Visser B., 1994 Insect resistance of transgenic plants that express modified Bacillus thuringiensis cry1A(b) and cryIC genes: a resistance management strategy Plant Molecular Biology 26:51–59

    Article  PubMed  Google Scholar 

  • van Frankenhuyzen K., Gringorten L., Gauthier D., 1997 Cry9Ca1 toxin, a Bacillus thuringiensis insecticidal crystal protein with high activity against the spruce budworm (Choristoneura fumiferana) Applied and Environmental Microbiology 63:4132–4234

    Google Scholar 

  • Vazquez-Padron R.I., de la Riva G., Aguero G., Silva Y., Pham, Si.M., Soboren M., Bravo A., Abdelouahab A., 2004 Cryptic endotoxic nature of Bacillus thuringiensis Cry1Ab insecticidal crystal protein FEBS Letters 570:30–36

    Article  PubMed  CAS  Google Scholar 

  • Vie V., Van Mau N., Pomarede P., Dance C., Schwartz J.L., Laprade R., Frutos R., Rang C., Masson L., Heitz F., Le Grimellec C., 2001 Lipid-induced pore formation of the Bacillus thuringiensis Cry1Aa insecticidal toxin Journal of Membrane Biology 180:195–203

    CAS  Google Scholar 

  • Vilas Boas G.F.L.T., Vilas Boas L.A., Lereclus D., Arantes O.M.N., 1998 Bacillus thuringiensis conjugation under environmental conditions FEMS Microbiology Ecology 25:369–374

    CAS  Google Scholar 

  • Vilas-Boas L.A., Vilas-Boas G.F.L.T., Saridakis H.O., Lemos M.V.F., Lereclus D., Arantes O.M.N., 2000 Survival and conjugation of Bacillus thuringiensis in a soil microcosm FEMS Microbiology Ecology 31:255–255

    Article  PubMed  CAS  Google Scholar 

  • Wang J., Boets A., Rie J.V., Ren G., 2003. Characterization of cry1, cry2, and cry9 genes in Bacillus thuringiensis isolates from China Journal of Invertebrate Pathology 82:63–71

    CAS  Google Scholar 

  • Wasano N., Ohba M., 1999 Assignment of delta endotoxin genes of the four lepidoptera specific Bacillus thuringiensis strains that produce spherical parasporal inclusions Current Microbiology 37:408–411

    Article  Google Scholar 

  • Wasano N., Ohba M., Miyamoto K., 2001 Two delta-endotoxin genes, cry9Da and a novel related gene, commonly occurring in Lepidoptera-specific Bacillus thuringiensis Japanese isolates that produce spherical parasporal inclusions Current Microbiology 42:129–133

    PubMed  CAS  Google Scholar 

  • Waterfield N.R., Bowen D.J., Fetherston J.D., Perry R.D., Ffrench-Constant R.H., 2001 The tc genes of Photorhabdus: a growing family Trends in Microbiology 9:185–191

    Article  PubMed  CAS  Google Scholar 

  • Wilcks A., Jayaswal N., Lereclus D., Andrup L., 1998. Characterization of plasmid pAW63, a second self transmissible plasmid in Bacillus thuringiensis subsp. kurstaki HD 73 Microbiology 144:1263–1270

    CAS  Google Scholar 

  • Winterer, J. 2002 The mixed success of protease inhibitors to combat insect pests in transgenic crops. http://www.agbiotechnet.com ABN 082, CAB International, Wellingford, UK

  • Winterer J., Bergelson J., 2001. Diamondback moth compensatory consumption of protease inhibitor transformed plants Molecular Ecology 10:1069–1074

    Article  PubMed  CAS  Google Scholar 

  • Wiwat C., Thaithanun S., Pantuwatana S., Bhumiratana A., 2000 Toxicity of chitinase-producing Bacillus thuringiensis sp. kurstaki HD-1 (G) toward Plutella xylostella Journal of Invertebrate Pathology 76:270–277

    CAS  Google Scholar 

  • Wu D., Aronson A.I., 1992 Localized mutagenesis defines regions of the Bacillus thuringiensis δ-endotoxin involved in toxicity and specificity Journal of Biological Chemistry 267:2311–2317

    CAS  Google Scholar 

  • Wu K., Guo Y., Lv N., Greenplate J.T., Deaton R., 2003 Efficacy of transgenic cotton containing a Cry1Ac gene from Bacillus thuringiensis against Helicoverpa armigera (Lepidoptera: Noctuidae) in north China Journal of Economic Entomology 96:1322–1328

    Article  CAS  Google Scholar 

  • Wu S.J., Dean D.H., 1996. Functional significance of loops in the receptor binding domain of Bacillus thuringiensis CryIIIA δ-endotoxin Journal of Molecular Biology 255:628–640

    Article  PubMed  CAS  Google Scholar 

  • Xu D., Xue Q., Mc Elory D., Manwal Y., Hilder V.A., Wu R., 1996 Constitutive expression of a cowpea trypsin inhibitor gene CpTi in transgenic rice plants cofers resistance to two major rice insect pests Molecular Breeding 2:186–193

    Google Scholar 

  • Yamamoto T., Powell G.K., 1993. Bacillus thuringiensis crystal proteins: recent advances in understanding its insecticidal activity. In Kim L., ed. Advanced Engineered Pesticides. New York: Marcel Dekker Inc. pp. 3–42 ISBN 0-8247-8990-3

    Google Scholar 

  • Zhao J.Z., Cao J., Li Y., Collins H.L., Roush R.T., Earle E.D., Shelton A.M., 2003 Transgenic plants expressing two Bacillus thuringiensis toxins delay insect resistance evolution Nature Biotechnology 21:1493–1497

    Article  PubMed  CAS  Google Scholar 

  • Zouari N., Jaoua S., 1997. Purification and immunological characterization of particular delta endotoxins from three strains of Bacillus thuringiensis Biotechnology Letters 19:825–829

    Article  CAS  Google Scholar 

Download references

Acknowledgement

Author wishes to thank Dr. Aqbal Singh and Dr. K.R. Koundal, National Research Centre on Plant Biotechnology, Indian Agricultural Research Institute, New Delhi, India, for research facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarvjeet Kaur.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaur, S. Molecular approaches for identification and construction of novel insecticidal genes for crop protection. World J Microbiol Biotechnol 22, 233–253 (2006). https://doi.org/10.1007/s11274-005-9027-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11274-005-9027-y

Keywords

Navigation