Skip to main content
Log in

Attenuation of cadmium toxicity in mycorrhizal celery (Apium graveolens L.)

  • Original Paper
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

A pot-culture experiment was carried out to investigate the effect of arbuscular mycorrhizal (AM) fungus (Glomus macrocarpum Tul. and Tul.) on plant growth and Cd2+uptake by Apium graveolens L. in soil with different levels of Cd2+. Mycorrhizal (M) and non-mycorrhizal (NM) plants were grown in soil with 0, 5, 10, 40 and 80 Cd2+ mg kg−1soil. The infectivity of the fungus was not affected by the presence of Cd2+ in the soil. M plants showed better growth and less Cd2+ toxicity symptoms. Cd2+ root : shoot ratio was higher in M plants than in NM plants. These differences were more evident at highest Cd2+ level (80 mg kg−1 soil). Chlorophyll a and chlorophyll b concentrations were significantly higher in AM-inoculated celery leaves. The dilution effect due to increased biomass, immobilization of Cd2+ in root and enhanced P-uptake in M plants may be related to attenuation of Cd2+toxicity in celery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Allen SE (1989) Chemical analysis of ecological materials 2. Blackwell, London

    Google Scholar 

  • Arnon DI (1949) Copper enzymes and isolated chloroplasts polyphenoloxidases in Beta vulgaris. Plant Physiol 24:1–15

    CAS  Google Scholar 

  • Biermann BJ, Linderman RG (1981) Quantifying vesicular arbuscular mycorrhizae: a proposed method towards standardization. New Phytol 89:57–63

    Google Scholar 

  • Black H (1995) Absorbing possibilities: phytoremediation. Envion Health Prospect 103:1106–1108

    Article  CAS  Google Scholar 

  • Dueck TA, Visser P, Ernst WHO, Sonat H (1986) Vesicular-arbuscular mycorrhiza decrease zinc toxicity to grasses growing in zinc-polluted soil. Soil Biol Biochem 18:331–337

    Article  Google Scholar 

  • Dufault RJ (1987) Use of slow-release nitrogen and phosphorus fertilizer in celery transplant production. Hort Sci 22:1268–1270

    Google Scholar 

  • Gaur A, Adholeya A (2004) Propects of arbuscular mycorrhizal fungi in phytoremediation of heavy metal contaminated soils. Curr Sci 86:528–534

    CAS  Google Scholar 

  • Gerdemann JW, Nicolson TH (1963) Spore of mycorrhizal Endogone species from soil by wet sieving and decanting. Trans Br Mycol Soc 46:235–244

    Google Scholar 

  • Gianinazzi-Pearson V, Gianinazzi S (1983) The physiology of arbuscular-mycorrhizal root. Plant Soil 71:197–209

    Article  CAS  Google Scholar 

  • Gildon A, Tinker PB (1981) A heavy metal-tolerant strain of a mycorrhizal fungus. New Phytol 95:247–261

    Article  Google Scholar 

  • Gildon A, Tinker PB (1983) Interactions of vesicular-arbuscular mycorrhiza infections and heavy metals in plants II. The effects of infection on uptake of copper. Trans Br Mycol Soc 77:648–649

    Google Scholar 

  • Giri B, Kapoor R, Mukerji KG (2003) Influence of arbuscular mycorrhizal fungi and salinity on growth, biomass and mineral nutrition of Acacia auriculiformis. Biol Fertil Soils 38:170–175

    Article  Google Scholar 

  • Heggo A, Angle JS, Charrey RL (1990) Effect of vesicular arbuscular mycorrhizal fungi on heavy-metal uptake by soybeans. Soil Biol Biochem 22:865–869

    Article  CAS  Google Scholar 

  • Heldebrandt U, Kaldrof M, Bothe H (1999) The zinc violet and its colonization by arbuscular myccohizal fungi. J Plant Physiol 154:709–717

    Google Scholar 

  • Hiscox JD, Israelstem GF (1979) A method for extraction of chlorophyll from leaf tissue without maceration. Can J Bot 57:1332–1334

    CAS  Google Scholar 

  • Jakobsen I, Abbott LK, Robson AD (1992) External hyphae of vesicular-arbuscular mycorrhizal fungi associated with Trifolium subterraneum L. 1. Spread of Hyphae and phosphorus inflow into roots. New Phytol 120:371–380

    Article  CAS  Google Scholar 

  • Joner EJ, Briones R, Leyval C (2000) Metal-binding capacity opf arbuscular mycorrhizal mycelium. Plant Soil 226:227–234

    Article  CAS  Google Scholar 

  • Joner EJ, Leyval C (2001) Time-course of heavy metal uptake in maize and clover as affected by root density and different mycorrhizal inoculation regimes. Biol Fertil Soil 33:351–357

    Article  CAS  Google Scholar 

  • Kaldrof M, Kuhn AH, Schroder WH, Hildebrandt U, Bothe H (1999) Selective element deposits in maize colonized by a heavy metal tolerance conferring arbuscular mycorrhizal fungus. J Plant Physiol 154:718–728

    Google Scholar 

  • Kapoor R, Giri B, Mukerji KG (2002) Mycorrhization of coriander to enhance the concentration and quality of oil in seeds. J Sci Food Agric 82:1–4

    Article  CAS  Google Scholar 

  • Kapoor R, Giri B, Mukerji KG (2002a) Glomus macrocarpum: a potential bioinoculant to improve essential oil quality and concentration in dill (Anethum graveolens L.) and carum (Trachyspermum ammi (Linn.) Sprague). World J Microbiol Biotechnol 18:459–463

    Article  CAS  Google Scholar 

  • Kapoor R, Giri B, Mukerji KG (2004b) Improved growth and essential oil yield and quality in Foeniculum vulgare Mill on mycorrhizal inoculation supplemented with P-fertilizer. Bioresour Technol 93:309–311

    Article  CAS  Google Scholar 

  • Karagiannidis N, Hadjisawa-Zinoviadi S (1998) The mycorrhizal fungus Glomus mosseae enhances growth, yield and chemical composition of a durum wheat variety in 10 different soils. Nutr Cycl Agroecosys 55:1–7

    Article  Google Scholar 

  • Karagiannidis N, Nikolaou N (2000) Influence of arbuscular mycorrhizae on heavy metal (Pb and Cd) uptake, growth, and chemical composition of Vitis vinifera L.(cv. Razaki). Am J Enol Vitic 51:269–275

    CAS  Google Scholar 

  • Kilham K, Firestone MK (1983) Vesicular-arbuscular mycorrhizal mediation of grass response to acidic and heavy metal depositions. Plant Soil 72:39–48

    Article  Google Scholar 

  • Koul M, Kapoor R, Luikham N (2001) Effect of lead contamination in soil on development of mycorrhiza in Cymopsis tetragonoloba (Linn.) Taub. Indian J Exp Biol 39:459–463

    CAS  Google Scholar 

  • Kroopnik PM (1994) Vapor abatement cost analysis methodology for calculating life cycle costs for hydrocarbon vapor extracted during soil venting. In: Wise DL, Trantola DJ (eds) Remediation of hazardous waste. Marcel Dekker, New York, pp 779–790

    Google Scholar 

  • Lakane E, Ervio R (1971) A comparison of eight extractants for the determination of plant available micronutrients on soil. Acta Agric Fenn 123:223–232

    Google Scholar 

  • Leyval C, Turnau K, Hasclwandter K (1997) Effect of heavy metal pollution on mycorrhizal colonization and function: physiological, ecological and applied aspects. Mycorrhiza 7:139–153

    Article  CAS  Google Scholar 

  • Madalgeri MB, Shivakumar BG (2002) Cultivation practices of basella (Basella spp.) and celery (Apium graveolens L.). In: Govil JN (ed) Recent progress in medicinal plants: crop improvement production technology, trade and commerce. Science Technology Publishing, Houston, pp 165–174

    Google Scholar 

  • Meharg AA, Cairney JWG (2000) Co-evolution of mycorrhizal symbionts and their hosts to metal-contaminated environments. Adv Ecol Res 30:69–112

    Article  CAS  Google Scholar 

  • Morgan JAW, Bending GD, White PJ (2005) Biological costs and benefits to plant-microbe interactions in the rhizosphere. J Exper Bot 56:1729–1739

    Article  CAS  Google Scholar 

  • Parker R (1994) Environmental restoration technologies. EMIAA Year book, pp 169–171

  • Phillips JH, Hayman DS (1970) Improved procedures for clearing roots and staining parasitic and vesicular arbuscular mycorrhizal fungi for rapid assessment of infection. Trans Br Mycol Soc 55:158–161

    Article  Google Scholar 

  • Rivera-Becerril F, Calantzis C, Turnau K, Caussanel JP, Belimov A, Gianinazzi S, Gianinazzi-Pearson V (2002) Cadmium accumulation and buffering of cadmium-induced stress by arbuscular mycorrhiza in three Pisum sativum L. genotypes. J Exp Bot 53:1177–1185

    Article  CAS  Google Scholar 

  • Salim R, Al-Sbbu MM, Douleh A, Khalaf S (1992) Effects on growth and uptake of broad bean (Vicia faba L.) by root and foliar treatments of plant with lead and cadmium. J Environ Sci Health 27:1619–1642

    Article  Google Scholar 

  • Sharma MP, Gaur A, Bhatia NP, Adholeya A (1996) Growth responses and dependence of Acacia nilotica var. cupressiformis on the indigenous arbuscular mycorrhizal consortium of a marginal wasteland soil. Mycorrhiza 6:441–446

    Article  Google Scholar 

  • Sieverding E (1991) Vesicular-arbuscular mycorrhizal management in tropical agrosystem. Bremer Verlag, Germany

    Google Scholar 

  • Smith SE, Read DJ (1997) Mycorrhizal symbiosis. Academic, San Diego

    Google Scholar 

  • Srivastava D, Kapoor R, Srivastava SK, Mukerji KG (1996) Vesicular arbuscular mycorrhiza-an overview. In: Mukerji KG (ed) Concepts in mycorrhizal research. Kluwer, Netherlands, pp 1–39

    Google Scholar 

  • Stobert AK, Grifith WT, Ameen-Bukhari I, Sherwood RP (1985) The effect of Cd on biosynthesis of chlorophyll in leaves of barley. Physiol Plant 63:293–298

    Article  Google Scholar 

  • Turnau K, Kottki I, Oberwinkler F (1993) Element localization in mycorrhizal roots of Pteridium aquilinum (L.) Kuhn collected from experimental plots treated with cadmium dust. New Phytol 123:313–324

    Article  CAS  Google Scholar 

  • Weissenhorn I, Glasshoff A, Leyval C, Berthlein J (1994) Differential tolerance to Cd and Zn of arbuscular mycorrhizal (AM) fungal spores isolated from heavy metal-polluted and unpolluted soils. Plant Soil 167:189–196

    Article  CAS  Google Scholar 

  • Wiessenhorn I, Leyval C, Belgy G, Berthelin J (1995) Arbuscular mycorrhizal contribution to heavy metal uptake by Maize (Zea mays L.) in pot culture with contaminated soil. Mycorrhiza 5:245–251

    Google Scholar 

  • Williams GM (1988) Integrated studies into ground water pollution by hazardous wastes. In: Gronow JR, Schofield AN, Jain RK (eds) Land disposal of hazardous waste, engineering and environmental issues. Horwood, Chichester

    Google Scholar 

Download references

Acknowledgements

The authors thank Dr. M. K. Sharma (Centre for Mycorrhizal Research, The Energy Research Institute, New Delhi) for statistical analysis. The work was funded by University Grants Commission, New Delhi, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rupam Kapoor.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kapoor, R., Bhatnagar, A.K. Attenuation of cadmium toxicity in mycorrhizal celery (Apium graveolens L.). World J Microbiol Biotechnol 23, 1083–1089 (2007). https://doi.org/10.1007/s11274-006-9337-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11274-006-9337-8

Keywords

Navigation