Skip to main content
Log in

The dominant bacteria shifted from the order “Lactobacillales” to Bacillales and Actinomycetales during a start-up period of large-scale, completely-mixed composting reactor using plastic bottle flakes as bulking agent

  • Original Paper
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Bacterial community succession in the start-up of a large-scale, completely-mixed composting reactor was analyzed by 16S rRNA gene (16S rDNA) clone analysis and denaturing gradient gel electrophoresis (DGGE) combined with measurements of temperature, pH, moisture contents, and decomposing rate. DGGE analysis and physicochemical parameters showed that bacterial community succession occurred in four phases; (1) at the start of operation and pH decreasing period (day 0–3), (2) pH decreased and increased period (day 4–11), (3) middle term, moisture content decreasing and maximum temperature increased period (day 12–16) and (4) latter term, temperature decreasing period (day 17–24). Lactobacillus spp. and Bacillus coagulans were detected from the initial phase and middle term, respectively. 16S rDNA clone analysis showed that the dominant bacteria shifted from the order “Lactobacillales” to Bacillales and Actinomycetales. The order “Lactobacillales” was unique which may be caused by using the plastic bottle flakes (polyethylene terephthalate, PET) as bulking agent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

BLAST:

Basic local alignment search tool

DGGE:

Denaturing gradient gel electrophoresis

rDNA:

rRNA gene

r.p.m.:

Revolutions per minute

VS:

Volatile substrate

References

  • Altschul SF, Gish W, Miller W, Meyers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    CAS  Google Scholar 

  • Beffa T, Blank M, Lyon PF, Vogt G, Marchiani M, Fischer JL, Aragano M (1996) Isolation of Thermus strains from hot composts (60 to 80°C). Appl Environ Microbiol 62:1723–1727

    CAS  Google Scholar 

  • Blanc M, Marilley L, Beffa T, Aragno M (1999) Thermophilic bacterial communities in hot composts as revealed by most probable number counts and molecular (16S rDNA) methods. FEMS Microbiol Ecol 28:141–149. doi:10.1111/j.1574-6941.1999.tb00569.x

    Article  CAS  Google Scholar 

  • Danon M, Franke-Whittle IH, Insam H, Chen Y, Hadar Y (2008) Molecular analysis of bacterial community succession during prolonged compost curing. FEMS Microbiol Ecol 65:133–144. doi:10.1111/j.1574-6941.2008.00506.x

    Article  CAS  Google Scholar 

  • Dees P, Ghiorse W (2001) Microbial diversity in hot synthetic compost as revealed by PCR-amplified rRNA sequences from cultivated isolates and extracted DNA. FEMS Microbiol Ecol 35:207–216. doi:10.1111/j.1574-6941.2001.tb00805.x

    Article  CAS  Google Scholar 

  • Ellis RJ, Morgan P, Weightman AJ, Fry JC (2003) Cultivation-dependent and -independent approaches for determining bacterial diversity in heavy-metal-contaminated soil. Appl Environ Microbiol 69:3223–3230. doi:10.1128/AEM.69.6.3223-3230.2003

    Article  CAS  Google Scholar 

  • Franke-Whittle IH, Klammer SH, Insam H (2005) Design and application of an oligonucleotide microarray for the investigation of compost microbial communities. J Microbiol Methods 62:37–56. doi:10.1016/j.mimet.2005.01.008

    Article  CAS  Google Scholar 

  • Green SJ, Michel JFC, Hader Y, Minz D (2004) Similarity of bacterial communities in sawdust- and straw-amended cow manure composts. FEMS Microbiol Lett 233:115–123. doi:10.1016/j.femsle.2004.01.049

    Article  CAS  Google Scholar 

  • Haruta S, Kondo M, Nakamura K, Aiba H, Ueno S, Ishii M, Igarashi Y (2002) Microbial community changes during organic solid waste treatment analyzed by double gradient-denaturing gradient gel electrophoresis and fluorescence in situ hybridization. Appl Microbiol Biotechnol 60:224–231. doi:10.1007/s00253-002-1074-9

    Article  CAS  Google Scholar 

  • Hemmi H, Shimoyama T, Nakayama T, Hoshi K, Nishino T (2004) Molecular biological analysis of microflora in a garbage treatment process under thermoacidophilic conditions. J Biosci Bioeng 97:119–126

    CAS  Google Scholar 

  • Ishii K, Takii S (2003) Comparison of microbial communities in four different composting processes as evaluated by denaturing gradient gel electrophoresis analysis. J Appl Microbiol 95:109–119. doi:10.1046/j.1365-2672.2003.01949.x

    Article  CAS  Google Scholar 

  • Ishii K, Fukui M, Takii S (2000) Microbial succession during a composting process as evaluated by denaturing gradient gel electrophoresis analysis. J Appl Microbiol 89:768–777. doi:10.1046/j.1365-2672.2000.01177.x

    Article  CAS  Google Scholar 

  • Ivors K, Beyer D, Wuest P, Kang S (2002) Survey of fungal diversity in mushroom compost using sequences of PCR-amplified genes encoding 18S ribosomal RNA. In: Insam H, Riddech K, Klammer S (eds) Microbiology of composting. Springer, Berlin, pp 17–24

    Google Scholar 

  • Kurosawa N, Itoh YH, Itoh T (2005) Thermus kawarayensis sp. nov., a new member of the genus Thermus, isolated from Japanese hot springs. Extremophiles 9:81–84. doi:10.1007/s00792-004-0419-y

    Article  Google Scholar 

  • Muyzer G, De Waal EC, Uitterlinden AG (1993) Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl Environ Microbiol 59:695–700

    CAS  Google Scholar 

  • Nagao N, Osa S, Matsuyama T, Namiki I, Yamamoto H, Toda T (2005) Optimization of washing rate in a hybrid recycling system of solid state and submerged fermentation. Process Biochem 40:3321–3326. doi:10.1016/j.procbio.2005.03.030

    Article  CAS  Google Scholar 

  • Nagao N, Watanabe K, Osa S, Matsuyama T, Kurosawa N, Toda T (2008) Bacterial community and decomposition rate in long term fed-batch composting using woodchip and polyethylene terephthalate (PET) as bulking agents. World J Microbiol Biotechnol 24:1417–1424. doi:10.1007/s11274-007-9625-y

    Article  CAS  Google Scholar 

  • Nakamura K, Haruta S, Nguyen HL, Ishii M, Igarashi Y (2004) Enzyme production-based approach for determinutesing the functions of microorganisms within a community. Appl Environ Microbiol 70:3329–3337. doi:10.1128/AEM.70.6.3329-3337.2004

    Article  CAS  Google Scholar 

  • Narihiro T, Abe T, Yamanaka Y, Hiraishi A (2004a) Microbial population dynamics during fed-batch operation of commercially available garbage composters. Appl Microbiol Biotechnol 65:488–495. doi:10.1007/s00253-004-1629-z

    Article  CAS  Google Scholar 

  • Narihiro T, Takebayashi S, Hiraishi A (2004b) Activity and phylogenetic composition of proteolytic bacteria in mesophilic fed-batch garbage composters. Microbes Environ 19:292–300. doi:10.1264/jsme2.19.292

    Article  Google Scholar 

  • Pedro MS, Haruta S, Hazaka M, Shimada R, Yoshida C, Hiura K, Ishii M, Igarashi Y (2001) Denaturing gradient gel electrophoresis analyses of microbial community from field-scale composter. J Biosci Bioeng 91:159–165. doi:10.1263/jbb.91.159

    Article  CAS  Google Scholar 

  • Pedro MS, Haruta S, Nakamura K, Hazaka M, Ishii M, Igarashi Y (2003) Isolation and characterization of predominant microorganisms during decomposition of waste materials in a field-scale composter. J Biosci Bioeng 95:368–373

    CAS  Google Scholar 

  • Prescott LM, Harley JP, Klein DA (2002) Microbiology, 5th edn. McGraw-Hill, New York

    Google Scholar 

  • Sakai K, Ezaki Y (2006) Open l-Lactic acid fermentation of food refuse using thermophilic Bacillus coagulans and fluorescence in situ hybridization analysis of microflora. J Biosci Bioeng 101:457–463. doi:10.1263/jbb.101.457

    Article  CAS  Google Scholar 

  • Sneath PHA, Mair NS, Sharpe ME, Holt JG (1986) Bergey’s manual of systematic bacteriology, vol 2. William & Wilkins, Baltimore

    Google Scholar 

  • Strom PF (1985a) Identification of thermophilic bacteria in solid-waste composting. Appl Environ Microbiol 50:906–913

    CAS  Google Scholar 

  • Strom PF (1985b) Effect of temperature on bacterial species diversity in thermophilic solid-waste composting. Appl Environ Microbiol 50:899–905

    CAS  Google Scholar 

Download references

Acknowledgments

We thank Mr. Shinichiro Osa for technical assistance, Dr. Teruaki Yoshida for correcting English. This work was supported by the “University-Industry Joint Research” Project for Private Universities and a matching fund subsidy from MEXT (Ministry of Education, Culture, Sports, Science and Technology) of Japan, 2004–2008.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keiko Watanabe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Watanabe, K., Nagao, N., Toda, T. et al. The dominant bacteria shifted from the order “Lactobacillales” to Bacillales and Actinomycetales during a start-up period of large-scale, completely-mixed composting reactor using plastic bottle flakes as bulking agent. World J Microbiol Biotechnol 25, 803–811 (2009). https://doi.org/10.1007/s11274-008-9952-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11274-008-9952-7

Keywords

Navigation