Skip to main content
Log in

Bacillus megaterium mediated mineralization of calcium carbonate as biogenic surface treatment of green building materials

  • Original Paper
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Microbially induced calcium carbonate precipitation is a biomineralization process that has various applications in remediation and restoration of range of building materials. In the present study, calcifying bacteria, Bacillus megaterium SS3 isolated from calcareous soil was applied as biosealant to enhance the durability of low energy, green building materials (soil–cement blocks). This bacterial isolate produced high amounts of urease, carbonic anhydrase, extra polymeric substances and biofilm. The calcium carbonate polymorphs produced by B. megaterium SS3 were analyzed by scanning electron microscopy, confocal laser scanning microscopy, X-ray diffraction and Fourier transmission infra red spectroscopy. These results suggested that calcite is the most predominant carbonate formed by this bacteria followed by vaterite. Application of B. megaterium SS3 as biogenic surface treatment led to 40 % decrease in water absorption, 31 % decrease in porosity and 18 % increase in compressive strength of low energy building materials. From the present investigation, it is clear that surface treatment of building materials by B. megaterium SS3 is very effective and eco friendly way of biodeposition of coherent carbonates that enhances the durability of building materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Achal V, Mukherjee A, Basu PC, Reddy MS (2009) Strain improvement of Sporosarcina pasteurii for enhanced urease and calcite production. J Ind Microbiol Biotechnol 36:981–988

    Article  CAS  Google Scholar 

  • APHA (American Public Health Association) (1989) Standard methods for the examination of water and wastewater, 7th edn. American Public Health Association, Washington, DC

    Google Scholar 

  • ASTM (American Society for Testing and Materials) (2007) Standard test methods for sampling and testing brick and structural clay tile. American Society for Testing and Materials, Standard C67, 12 pages

  • Bachmeier KL, Williams AE, Warmington JR, Bang SS (2002) Urease activity in microbiologically-induced calcite precipitation. J Biotechnol 93:171–181

    Article  CAS  Google Scholar 

  • Baskar S, Baskar R, Mauclaire L, Mckenzie JA (2005) Role of microbial community in stalactite formation, Sahastradhara caves, Dehradun, India. Curr Sci 88:1305–1308

    CAS  Google Scholar 

  • Boyd A, Chakrabarty AM (1995) Pseudomonas aeruginosa biofilms: role of the alginate exopolysaccharide. J Ind Microbiol 15:162–168

    Article  CAS  Google Scholar 

  • Burne RA, Chen RE (2001) Bacterial ureases in infectious diseases. Microbes Infect 2:533–542

    Article  Google Scholar 

  • Castanier S, Le Metayer-Levrel G, Perthuisot JP (2000) Bacterial roles in the precipitation of carbonate minerals. In: Riding RE, Awramik SM (eds) Microbial sediments. Springer, Heidelberg, pp 32–39

    Chapter  Google Scholar 

  • Cerning J, Renard CMGC, Thibault JF, Bouillanne C, Landon M, Desmazeaud M, Topisirovic L (1994) Carbon source requirements for exopolysaccharide production by Lactobacillus casei CG11 and partial structure analysis of the polymer. Appl Environ Microbiol 60:3914–3919

    CAS  Google Scholar 

  • Ciurli S, Benini S, Rypniewski WR, Wilson KS, Miletti S, Mangani S (1999) Structural properties of the nickel ions in urease: novel insights into the catalytic and inhibition mechanisms. Coordin Chem Rev 190:331–355

    Article  Google Scholar 

  • De Jong JT, Fritzges MB, Nusslein K (2006) Microbially induced cementation to control sand response to undrained shear. J Geotech Geoenviron 132:1381–1392

    Article  Google Scholar 

  • De Muynck W, De Belie N, Verstraete W (2010) Microbial carbonate precipitation in construction materials: a review. Ecol Eng 36:118–136

    Article  Google Scholar 

  • De Muynck W, Leuridan S, Loo DV, Verbeken K, Cnudde V, De Belie N, Verstraete W (2011) Influence of pore structure on the effectiveness of a biogenic carbonate surface treatment for limestone conservation. Appl Environ Microbiol 77:6808–6820

    Article  Google Scholar 

  • De Muynck W, Verbeken K, De Belie N, Verstraete W (2012) Influence of temperature on the effectiveness of a biogenic carbonate surface treatment for limestone conservation. Appl Microbiol Biotechnol. doi:10.1007/s00253-012-3997-0

    Google Scholar 

  • DeJong JT, Mortensen MB, Martinez BC, Nelson DC (2010) Biomediated soil improvement. Ecol Eng 36:197–210

    Article  Google Scholar 

  • Dhami NK, Mukherjee A, Reddy MS (2012a). Biofilm and microbial applications in biomineralized concrete. In: Seto J (ed) Advanced topics in biomineralization. InTech, pp 137–164

  • Dhami NK, Mukherjee A, Reddy MS (2012b) Improvement in strength properties of ash bricks by bacterial calcite. Ecol Eng 39:31–35

    Article  Google Scholar 

  • Dhami NK, Mukherjee A, Reddy MS (2013) Biomineralization of calcium carbonate polymorphs by the bacterial strains isolated from calcareous sites. J Microbiol Biotechnol. doi:10.4014/jmb.1212.11087

  • Dick J, De Windt W, De Graef B, Saveyn H, Van der Meeren P, De Belie N, Verstraete W (2006) Bio-deposition of a calcium carbonate layer on degraded limestone by Bacillus species. Biodegradation 17:357–367

    Article  CAS  Google Scholar 

  • Ercole C, Bozzelli P, Altieri F, Cacchio P, Gallo MD (2012) Calcium carbonate mineralization: involvement of extracellular polymeric materials isolated from calcifying bacteria. Microsc Microanal 18:829–839

    Article  CAS  Google Scholar 

  • Ferris FG, Fyfe WS, Beveridge TJ (1987) Bacteria as nucleation sites for authigenic minerals in a metal-contaminated lake sediment. Chem Geol 63:225–232

    Article  CAS  Google Scholar 

  • Hamdan N, Kavazanjian E Jr, Rittmann BE, Karatas I (2011) Carbonate mineral precipitation for soil improvement through microbial denitrification. ASCE Geo Frontiers Adv Geotech Eng 211:3925–3934

    Google Scholar 

  • Hammes F, Verstraete W (2002) Key roles of pH and calcium metabolism in microbial carbonate precipitation. Rev Environ Sci Biotech 1:3–7

    Article  CAS  Google Scholar 

  • IS 3495 (1992) Methods of test of burnt clay building bricks

  • Kawaguchi T, Decho AW (2002) A laboratory investigation of cyanobacterial extracellular polymeric secretion (EPS) in influencing CaCO3 polymorphism. J Cryst Growth 240:230–235

    Article  CAS  Google Scholar 

  • Lowenstam HA (1981) Minerals formed by organisms. Science 211:1126–1131

    Article  CAS  Google Scholar 

  • Mc Connaughey TA, Whelan FF (1997) Calcification generates protons for nutrient and bicarbonate uptake. Earth Sci Rev 42:95–117

    Article  CAS  Google Scholar 

  • Merz-Preiss M, Riding R (1999) Cyanobacterial tufa calcification in two fresh streams: ambient environment, chemical thresholds and biological processes. Sediment Geol 126:103–124

    Article  CAS  Google Scholar 

  • Mitchell AC, Ferris FG (2010) Microbially enhanced carbon capture and storage by mineral—trapping and solubility-trapping. Environ Sci Technol 44:5270–5276

    Article  CAS  Google Scholar 

  • Mobley HLT, Hausinger RP (1989) Microbial ureases: significance, regulation and molecular characterisation. Microbiol Rev 53:85–108

    CAS  Google Scholar 

  • Morse JW (1983) The kinetics of calcium carbonate dissolution and precipitation. In: Reeder RJ (ed) Carbonates. Mineral Chem 11:227–264

  • Novitsky JA (1981) Calcium carbonate precipitation by marine bacteria. Geomicrobiology 2:375–388

    Article  CAS  Google Scholar 

  • Okwadha GDO, Li J (2010) Optimum conditions for microbial carbonate precipitation. Chemosphere 81:1143–1148

    Article  CAS  Google Scholar 

  • Park IS, Hausinger RP (1995) Requirement of carbon dioxide for in vitro assembly of urease nickel metallocenter. Sci 267:1156–1158

    Article  CAS  Google Scholar 

  • Pedrozo HA, Schwartz Z, Luther M, Dean DD, Boyan BD, Wiederhold ML (1996) A mechanism of adaptation to hypergravity in the statocyst of Aplysiacalifornica. Hearing Res 102:51–62

    Article  CAS  Google Scholar 

  • Qian C, Wang R, Cheng L, Wang J (2010) Theory of microbial carbonate precipitation and its application in restoration of cement-based materials defects. Chin J Chem 28:847–857

    Article  CAS  Google Scholar 

  • Reddy BVV, Gupta A (2005) Characteristics of soil-cement blocks using highly sandy soils. Mater Struct 38:651–658

    CAS  Google Scholar 

  • Reddy BVV, Jagadish KS (2003) Embodied energy of common and alternative building materials and technologies. Energy Build 35:129–137

    Article  Google Scholar 

  • Rivadeneyra MA, Parraga J, Delgado R, Ramos-Cormenzana A, Delgado G (1998) Biomineralisation of carbonates by Halomonas eurihalina in solid and liquid media with different salinities: crystal formation sequence. Res Microbiol 149:277–287

    Article  CAS  Google Scholar 

  • Rivadeneyra MA, Parraga J, Delgado R, Ramos-Cormenzana A, Delgado G (2004) Biomineralization of carbonates by Halobacillus trueperi insolid and in liquid media with different salinities. FEMS Microbiol Ecol 48:39–46

    Article  CAS  Google Scholar 

  • Rodriguez Navarro C, Rodriguez-Gallego M, Ben Chekroun K, Gonzalez-Muñoz MT (2003) Conservation of ornamental stone by Myxococcus xanthus induced carbonate biomineralization. Appl Environ Microbiol 69:2182–2193

    Article  CAS  Google Scholar 

  • Rodriguez Navarro C, Jroundi F, Schiro M, Ruiz-Agudo E, González-Muñoz MT (2012) Influence of substrate mineralogy on bacterial mineralization of calcium carbonate: implications in stone conservation. Appl Environ Microbiol 78:4017–4029

    Article  CAS  Google Scholar 

  • Smith KS, Ferry JG (1999) A plant type (L class) carbonic anhydrase from the thermophilic methanoarchaeon Methanobacteium thermoautotrophicum. J Bacteriol 181:6247–6253

    CAS  Google Scholar 

  • Smith KS, Ferry JG (2000) Prokaryotic carbonic anhydrases. FEMS Microbiol Rev 24:335–366

    Article  CAS  Google Scholar 

  • Stahler MF, Ganter L, Katherin L, Manfred K, Stephen B (2005) Mutational analysis of Helicobacter pylori carbonic anhydrases. FEMS Immunol Medical Microbiol 44:183–189

    Article  Google Scholar 

  • Stocks-Fischer S, Galinat JK, Bang SS (1999) Microbiological precipitation of CaCO3. Soil Biol Biochem 31:1563–1571

    Article  CAS  Google Scholar 

  • Thimodo M (2007) A lux/gfp dual label system for studying attachment and biofilm formation of Enterobacter sakazakii. Surg 1:22–28

    Google Scholar 

  • Tsuneda S, Jung J, Hayashi H, Aikawa H, Hirata A, Sasaki H (2003) Influence of extracellular polymers on electrokinetic properties of heterotrophic bacterial cells examined by soft particle electrophoresis theory. Colloid Surf B 29:181–188

    Article  CAS  Google Scholar 

  • Warren LA, Maurice PA, Parmar N, Ferris FG (2001) Microbially mediated calcium carbonate precipitation: implications for interpreting calcite precipitation and for solid-phase capture of inorganic contaminants. Geomicrobiol J 18:93–115

    Article  CAS  Google Scholar 

  • Warthman R, van Lith Y, Vasconcelos C, Mckenzie JA, Karpoff AM (2000) Bacterially induced dolomite precipitation in anoxic culture experiments. Geol 28:1091–1094

    Article  Google Scholar 

  • Weaver T, Burbank M, Lewis R, Lewis A, Crawford R, Williams B (2011) Bio-induced calcite, iron, and manganese precipitation for geotechnical engineering applications. ASCE Geo Frontiers 2011: Advances in Geotechnical Engineering, Geotechnical Special Publication 211:3975–3983

  • Zamarreno DV, Inkpen R, May E (2009) Carbonate crystals precipitated by freshwater bacteria and their use as a limestone consolidant. Appl and Environ Microbiol 75:5981–5990

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are thankful to TIFAC-CORE, Thapar University, Patiala, Punjab, India for provided lab facilities for research. We would also like to thank Council of Scientific and Industrial Research (CSIR) for their financial support to this project (37(1484)/2011/EMR-II). We would also acknowledge Mr. Ashok Kumar Sahu from Advanced Instrumentation Research Facility (AIRF), JNU, for providing instrumental support for electron microscopy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Sudhakara Reddy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dhami, N.K., Reddy, M.S. & Mukherjee, A. Bacillus megaterium mediated mineralization of calcium carbonate as biogenic surface treatment of green building materials. World J Microbiol Biotechnol 29, 2397–2406 (2013). https://doi.org/10.1007/s11274-013-1408-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11274-013-1408-z

Keywords

Navigation