Skip to main content
Log in

Microalgae from the Selenastraceae as emerging candidates for biodiesel production: a mini review

  • REVIEW
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Over the years, microalgae have been identified to be a potential source of commercially important products such as pigments, polysaccharides, polyunsaturated fatty acids and in particular, biofuels. Current demands for sustainable fuel sources and bioproducts has led to an extensive search for promising strains of microalgae for large scale cultivation. Prospective strains identified for these purposes were among others, mainly from the genera Hematococcus, Dunaliella, Botryococcus, Chlorella, Scenedesmus and Nannochloropsis. Recently, microalgae from the Selenastraceae emerged as potential candidates for biodiesel production. Strains from the Selenastraceae such as Monoraphidium sp. FXY-10, M. contortum SAG 47.80, Ankistrodesmus sp. SP2-15 and M. minutum were high biomass and lipid producers when cultivated under optimal conditions. A number of Selenastraceae strains were also reported to be suitable for cultivation in wastewater. This review highlights recent reports on potential strains from the Selenastraceae for biodiesel production and contrasts their biomass productivity, lipid productivity as well as fatty acid profile. Cultivation strategies employed to enhance their biomass and lipid productivity as well as to reduce feedstock cost are also discussed in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Álvarez-Díaz PD, Ruiz J, Arbib Z, Barragán J, Garrido-Pérez C, Perales JA (2014) Lipid production of microalga Ankistrodesmus falcatus increased by nutrient and light starvation in a two-stage cultivation process. Appl Biochem Biotechnol 174:1471–1483

    Article  Google Scholar 

  • Arroussi EL, Benhima R, Bennis I, Mernissi EL, Wahby I (2015) Improvement of the potential of Dunaliella tertiolecta as a source of biodiesel by auxin treatment coupled to salt stress. Renew Energy 77:15–19

    Article  Google Scholar 

  • Bogen C, Klassen V, Wichmann J, Russa ML, Doebbe A, Grundmann M, Uronen P, Kruse O, Mussgnug JH (2013) Identification of Monoraphidium contortum as a promising species for liquid biofuel production. Bioresour Technol 133:622–626

    Article  CAS  Google Scholar 

  • Breuer G, Lamers PP, Martens DE, Draaisma RB, Wijffels RH (2012) The impact of nitrogen starvation on the dynamics of triacylglycerol accumulation in nine microalgae strains. Bioresour Technol 124:217–226

    Article  CAS  Google Scholar 

  • Che R, Huang L, Yu X (2015) Enhanced biomass production, lipid yield and sedimentation efficiency by iron ion. Bioresour Technol 192:795–798

    Article  CAS  Google Scholar 

  • Chen C, Yeh K, Aisyah R, Lee D, Chang J (2011) Cultivation, photobioreactor design and harvesting of microalgae for biodiesel production: a critical review. Bioresour Technol 102:71–81

    Article  CAS  Google Scholar 

  • Chen Z, Gong Y, Fang X, Hu H (2012) Scenedesmus sp. NJ-1 isolated from Antarctica: a suitable renewable lipid source for biodiesel production. World J Microbiol Biotechnol 28:3219–3225

    Article  CAS  Google Scholar 

  • Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25:294–306

    Article  CAS  Google Scholar 

  • Courchesne NMD, Parisien A, Wang B, Lan CQ (2009) Enhancement of lipid production using biochemical, genetic and transcription factor engineering approaches. J Biotechnol 141:31–41

    Article  CAS  Google Scholar 

  • Devi PM, Subhash GV, Mohan SV (2012) Heterotrophic cultivation of mixed microalgae for lipid accumulation and wastewater treatment during sequential growth and starvation phases: effect of nutrient supplementation. Renew Energy 43:276–283

    Article  Google Scholar 

  • Dhup S, Dhawan V (2014) Effect of nitrogen concentration on lipid productivity and fatty acid composition of Monoraphidium sp. Bioresour Technol 152:572–575

    Article  CAS  Google Scholar 

  • El-Sheekh M, Abomohra AEF, Hanelt D (2013) Optimization of biomass and fatty acid productivity of Scenedesmus obliquus as a promising microalga for biodiesel production. World J Microbiol Biotechnol 29:915–922

    Article  CAS  Google Scholar 

  • Fawley MW, Dean ML, Dimmer SK, Fawley KP (2006) Evaluating the morphospecies concept in the Selenastraceae (Chlorophyceae, Chlorophyta). J Phycol 42:142–154

    Article  Google Scholar 

  • Feng P, Deng Z, Fan L, Hu Z (2012) Lipid accumulation and growth characteristics of Chlorella zofingiensis under different nitrate and phosphate concentrations. J Biosci Bioeng 114:405–410

    Article  CAS  Google Scholar 

  • George B, Pancha I, Desai C, Chokshi K, Paliwal C, Ghosh T, Mishra S (2014) Effects of different media composition, light intensity and photoperiod on morphology and physiology of freshwater microalgae Ankistrodesmus falcatus—a potential strain for bio-fuel production. Bioresour Technol 171:367–374

    Article  CAS  Google Scholar 

  • Ghosh S, Roy S, Das D (2015) Improvement of biomass production by Chlorella sp. MJ 11/11 for use as a feedstock for biodiesel. Appl Biochem Biotechnol 175:3322–3335

    Article  CAS  Google Scholar 

  • Guerrero-Cabrera L, Rueda JA, Garcia-Lozano H, Navarro AK (2014) Cultivation of Monoraphidium sp., Chlorella sp. and Scenedesmus sp. algae in batch culture using Nile tilapia effluent. Bioresour Technol 161:455–460

    Article  CAS  Google Scholar 

  • He Q, Yang H, Wu L, Hu C (2015a) Effect of light intensity on physiological changes, carbon allocation and neutral lipid accumulation in oleaginous microalgae. Bioresour Technol 191:219–228

    Article  CAS  Google Scholar 

  • He Q, Yang H, Xu L, Xia L, Hu C (2015b) Sufficient utilization of natural fluctuating light intensity is an effective approach of promoting lipid productivity in oleaginous microalgal cultivation outdoors. Bioresour Technol 180:79–87

    Article  CAS  Google Scholar 

  • Holbrook GP, Davidson Z, Tatara RA, Ziemer NL, Rosentrater KA, Grayburn WS (2014) Use of the microalga Monoraphidium sp. grown in wastewater as a feedstock for biodiesel: cultivation and fuel characteristics. Appl Energy 131:386–393

    Article  CAS  Google Scholar 

  • Knothe G (2009) Improving biodiesel fuel properties by modifying fatty ester composition. Energy Environ Sci 2:759–766

    Article  CAS  Google Scholar 

  • Krienitz L, Ustinova I, Friedl T, Huss VAR (2001) Traditional generic concepts versus 18S rRNA phylogeny in the green algal family Selenastraceae (Chlorophyceae, Chlorophyta). J Phycol 37:852–865

    Article  CAS  Google Scholar 

  • Li Y, Mu J, Chen D, Xu H, Han F (2015) Enhanced lipid accumulation and biodiesel production by oleaginous Chlorella protothecoides under a structured heterotrophic-iron (II) induction strategy. World J Microbiol Biotechnol 31:773–783

    Article  CAS  Google Scholar 

  • Liu J, Huang J, Jiang Y, Chen F (2012) Molasses-based growth and production of oil and astaxanthin by Chlorella zofingiensis. Bioresour Technol 107:393–398

    Article  Google Scholar 

  • Markou G, Nerantzis E (2013) Microalgae for high-value compounds and biofuels production: a review with focus on cultivation under stress conditions. Biotechnol Adv 31:1532–1542

    Article  CAS  Google Scholar 

  • Nascimento MD, Dublan MDLA, Ortiz-Marquez JCF, Curatti L (2013) High lipid productivity of an AnkistrodesmusRhizobium artificial consortium. Bioresour Technol 146:400–407

    Article  Google Scholar 

  • Patidar SK, Mitra M, George B, Soundarya R, Mishra S (2014) Potential of Monoraphidium minutum for carbon sequestration and lipid production in response to varying growth mode. Bioresour Technol 172:32–40

    Article  CAS  Google Scholar 

  • Perez-Garcia O, Bashan Y, Puente ME (2011) Organic carbon supplementation of sterilized municipal wastewater is essential for heterotrophic growth and removing ammonium by the microalgae Chlorella vulgaris. J Phycol 47:190–199

    Article  Google Scholar 

  • Ramos GJP, de Bicudo CEM, Góes-Neto A, do Moura CWN (2012) Monoraphidium and Ankistrodesmus (Chlorophyceae, Chlorophyta) from Pantanal dos Marimbus, Chapada Diamantina, Bahia State, Brazil. Hoehnea 39:421–434

    Article  Google Scholar 

  • Ras M, Steyer JP, Bernard O (2013) Temperature effect on microalgae: a crucial factor for outdoor production. Rev Environ Sci Biotechnol 12:153–164

    Article  CAS  Google Scholar 

  • Rios LF, Klein BC, Luz LFJ, Filho RM, Maciel MRW (2015) Nitrogen starvation for lipid accumulation in the microalga species Desmodesmus sp. Appl Biochem Biotechnol 175:469–476

    Article  CAS  Google Scholar 

  • Sharma KK, Schuhmann H, Schenk PM (2012) High lipid induction in microalgae for biodiesel production. Energies 5:1532–1553

    Article  CAS  Google Scholar 

  • Shu CH, Tsai CC, Chen KY, Liao WH, Huang HC (2013) Enhancing high quality oil accumulation and carbon dioxide fixation by a mixed culture of Chlorella sp. and Saccharomyces cerevisiae. J Taiwan Inst Chem Eng 44:936–942

    Article  CAS  Google Scholar 

  • Tale M, Ghosh S, Kapadnis B, Kale S (2014) Isolation and characterization of microalgae for biodiesel production from Nisargruna biogas plant effluent. Bioresour Technol 169:238–335

    Google Scholar 

  • Talukdar J, Kalita MC, Goswami BC (2013) Characterization of the biofuel potential of a newly isolated strain of the microalga Botryococcus braunii Kützing from Assam, India. Bioresour Technol 149:268–275

    Article  CAS  Google Scholar 

  • Wei A, Zhang X, Wei D, Chen G, Wu Q, Yang ST (2009) Effects of cassava starch hydrolysate on cell growth and lipid accumulation of the heterotrophic microalgae Chlorella protothecoides. J Ind Microbiol Biotechnol 36:1383–1389

    Article  CAS  Google Scholar 

  • Wu LF, Chen PC, Lee CM (2013) The effects of nitrogen sources and temperature on cell growth and lipid accumulation of microalgae. Int Biodeterior Biodegrad 85:506–510

    Article  CAS  Google Scholar 

  • Xu H, Miao X, Wu Q (2006) High quality biodiesel production from a microalga Chlorella protothecoides by heterotrophic growth in fermenters. J Biotechnol 126:499–507

    Article  CAS  Google Scholar 

  • Yang H, He Q, Hu C (2015) Lipid accumulation by NaCl induction at different growth stages and concentrations in photoautotrophic two-step cultivation of Monoraphidium dybowskii LB50. Bioresour Technol 187:221–227

    Article  CAS  Google Scholar 

  • Yee W (2015) Feasibility of various carbon sources and plant materials in enhancing the growth and biomass productivity of the freshwater microalgae Monoraphidium griffithii NS16. Bioresour Technol 196:1–8

    Article  CAS  Google Scholar 

  • Yen HW, Chen PW, Chen LJ (2015) The synergistic effects for the co-cultivation of oleaginous yeast-Rhodotorula glutinis and microalgae-Scenedesmus obliquus on the biomass and total lipids accumulation. Bioresour Technol 184:148–152

    Article  CAS  Google Scholar 

  • Yu X, Zhao P, He C, Li J, Tang X, Zhou J, Huang Z (2012) Isolation of a novel strain of Monoraphidium sp. and characterization of its potential application as biodiesel feedstock. Bioresour Technol 121:256–262

    Article  CAS  Google Scholar 

  • Zhao P, Yu X, Li J, Tang X, Huang Z (2014) Enhancing lipid productivity by co-cultivation of Chlorella sp. U4341 and Monoraphidium sp. FXY-10. J Biosci Bioeng 118:72–77

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Willy Yee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yee, W. Microalgae from the Selenastraceae as emerging candidates for biodiesel production: a mini review. World J Microbiol Biotechnol 32, 64 (2016). https://doi.org/10.1007/s11274-016-2023-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11274-016-2023-6

Keywords

Navigation