Skip to main content
Log in

The production and uses of Beauveria bassiana as a microbial insecticide

  • REVIEW
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Among invertebrate fungal pathogens, Beauveria bassiana has assumed a key role in management of numerous arthropod agricultural, veterinary and forestry pests. Beauveria is typically deployed in one or more inundative applications of large numbers of aerial conidia in dry or liquid formulations, in a chemical paradigm. Mass production is mainly practiced by solid-state fermentation to yield hydrophobic aerial conidia, which remain the principal active ingredient of mycoinsecticides. More robust and cost-effective fermentation and formulation downstream platforms are imperative for its overall commercialization by industry. Hence, where economics allow, submerged liquid fermentation provides alternative method to produce effective and stable propagules that can be easily formulated as dry stable preparations. Formulation also continues to be a bottleneck in the development of stable and effective commercial Beauveria-mycoinsecticides in many countries, although good commercial formulations do exist. Future research on improving fermentation and formulation technologies coupled with the selection of multi-stress tolerant and virulent strains is needed to catalyze the widespread acceptance and usefulness of this fungus as a cost-effective mycoinsecticide. The role of Beauveria as one tool among many in integrated pest management, rather than a stand-alone management approach, needs to be better developed across the range of crop systems. Here, we provide an overview of mass-production and formulation strategies, updated list of registered commercial products, major biocontrol programs and ecological aspects affecting the use of Beauveria as a mycoinsecticide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Akello J, Dubois T, Coyne D, Kyamanywa S (2008) Endophytic Beauveria bassiana in banana (Musa spp.) reduces banana weevil (Cosmopolites sordidus) fitness and damage. Crop Prot 27(11):1437–1441

    Article  Google Scholar 

  • Akello J, Dubois T, Coyne D, Hillnhutter C (2009) Beauveria bassiana as an endophyte in tissue-cultured banana plants: a novel way to combat the banana weevil Cosmopolites sordidus. Acta Hortic 828:129–138

    Article  Google Scholar 

  • Akutse KS, Fiaboe KKM, Van Den Berg J, Ekesi S, Maniania NK (2014) Effects of endophyte colonization of Vicia faba (fabaceae) plants on the life-history of leafminer parasitoids Phaedrotoma scabriventris (Hymenoptera: Braconidae) and Diglyphus isaea (Hymenoptera: Eulophidae). PLoS ONE 9(10):e109965

    Article  CAS  Google Scholar 

  • Alves SB, Pereira RM (1989) Production of Metarhizium anisopliae (Metsch.) Sorok. and Beauveria bassiana (Bals.) Vuill. in plastic trays. Ecossistema 14:188–192

    Google Scholar 

  • Alves RT, Bateman RP, Prior C, Leather SR (1998) Effects of simulated solar radiation on conidial germination of Metarhizium anisopliae in different formulations. Crop Prot 17:675–679

    Article  CAS  Google Scholar 

  • Aristizábal LF, Lara O, Arthurs SP (2012) Implementing an integrated pest management program for coffee berry borer in a specialty coffee plantation in Colombia. J Integr Pest Manag 3(1):G1–G5

    Article  Google Scholar 

  • Aristizábal LF, Bustillo AE, Arthurs SP (2016) Integrated pest management of coffee berry borer: strategies from Latin America that could be useful for coffee farmers in Hawaii. Insects 7:E6

    Article  Google Scholar 

  • Bateman RP, Carey M, Moore D, Prior C (1993) The enhanced infectivity of Metarhizium flavoviride in oil formulations at low humidities. Ann Appl Biol 122:145–152

    Article  Google Scholar 

  • Behie SW, Zelisko PM, Bidochka MJ (2012) Endophytic insect parasitic fungi translocate nitrogen directly from insects to plants. Science 336:1576–1577

    Article  CAS  Google Scholar 

  • Behle RW, Compton DL, Laszlo JA, Shapiro-Ilan DI (2009) Evaluation of soyscreen in an oil-based formulation for UV protection of Beauveria bassiana conidia. J Econ Entomol 102(5):1759–1766

    Article  CAS  Google Scholar 

  • Bissett J, Widden P (1986) A new species of Beauveria from Scottish moorland soil. Can J Bot 66:361–362

    Article  Google Scholar 

  • Boomsma JJ, Jensen AB, Meyling NV, Eilenberg J (2014) Evolutionary interaction networks of insect pathogenic fungi. Ann Rev Entomol 59:467–485

    Article  CAS  Google Scholar 

  • Brar SK, Verma M, Tyagi RD, Valéro JR (2006) Recent advances in downstream processing and formulations of Bacillus thuringiensis based biopesticides. Process Biochem 41:323–342

    Article  CAS  Google Scholar 

  • Burges HD (1998) Formulation of microbial biopesticides: beneficial organisms, nematodes and seed treatments. Kluwer Academic, Dordrecht, p 412

    Book  Google Scholar 

  • ChengXiang H, GuangXing Q, Tao G, Kun G, ZhongHua P, HeYing Q, XiJie G (2014) Differentially expressed genes in the silkworm (Bombyx mori) against infection by Beauveria bassiana. Acta Entomol Sin 57(1):13–24

    Google Scholar 

  • Chong-Rodriguez MJ, Maldonado-Blanco MG, Hernandez-Escareno JJ, Galan-Wong LJ, Sandoval-Coronado CF (2011) Study of Beauveria bassiana growth, blastospore yield, desiccation-tolerance, viability and toxic activity using different liquid media. Afr J Biotech 10:5736–5742

    Google Scholar 

  • Cohen E, Joseph T (2009) Photostabilization of Beauveria bassiana conidia using anionic dyes. Appl Clay Sci 42:569–574

    Article  CAS  Google Scholar 

  • Cory JS, Ericsson JD (2010) Fungal entomopathogens in a trithrophic context. Biocontrol 55:75–88

    Article  Google Scholar 

  • Couteaudier Y, Viaud M, Riba G (1996) Genetic nature, stability, and improved virulence of hybrids from protoplast fusion in Beauveria. Microb Ecol 32(1):1–10

    Article  Google Scholar 

  • CPL Business Consultants (2010) The 2010 worldwide biopesticides market summary, vol 1. CPL Scientific, Wallingford, p 39

    Google Scholar 

  • Crespo R, Juarez MP, Dal Bello GM, Padin S, Fernandez GC, Pedrini N (2002) Increased mortality of Acanthoscelides obtectus by alkane-grown Beauveria bassiana. Biocontrol 47(6):685–696

    Article  CAS  Google Scholar 

  • Crowder DW, Northfield TD, Strand MR, Snyder WE (2010) Organic agriculture promotes evenness and natural pest control. Nat Lett 466:109–113

    Article  CAS  Google Scholar 

  • deHoog GS (1972) The genera Beauveria, Isaria, Tritrachium and Acrodontium n. gen.nov. Stud Mycol 1:1–41

    Google Scholar 

  • deHoog GS, Rao V (1975) Some new hyphomycetes. Persoonia 8:207–212

    Google Scholar 

  • Dowd PF, Vega FE (2003) Autodissemination of Beauveria bassiana by sap beetles (Coleoptera: Nitidulidae) to overwintering sites. Biocontrol Sci Technol 13:65–75

    Article  Google Scholar 

  • Dubois T, Li Z, Hajek AE (2004) Efficacy of fiber bands impregnated with Beauveria brongniartii cultures against the Asian longhorned beetle, Anoplophora glabripennis (Coleoptera: Cerambycidae). Biol Control 31(3):320–328

    Article  Google Scholar 

  • Ehlers R (2011) Regulation of biological control agents. Springer, Dordrecht 416

    Book  Google Scholar 

  • Ekesi S, Dimbi S, Maniania NK (2007) The role of entomopathogenic fungi in the integrated management of tephritid fruit flies (Diptera: Tephritidae) with emphasis on species occurring in Africa. In: Ekesi S, Maniania NK (eds) Use of entomopathogenic fungi in biological pest management. Research SignPost, Kerala, pp 239–274

    Google Scholar 

  • Farenhorst M, Knols BGJ, Thomas MB, Howard AFV, Takken W, Rowland M, N’Guessan R (2010) Synergy in efficacy of fungal entomopathogens and permethrin against West African insecticide-resistant Anopheles gambiae mosquitoes. PLoS ONE 5(8):e12081

    Article  CAS  Google Scholar 

  • Faria M, Wraight SP (2001) Biological control of Bemisia tabaci with fungi. Crop Prot 20:767–778

    Article  Google Scholar 

  • Faria MR, Wraight SP (2007) Mycoinsecticides and mycoacaricides: a comprehensive list with worldwide coverage and international classification of formulation types. Biol Control 43:237–256

    Article  CAS  Google Scholar 

  • Faria M, Hotchkiss JH, Wraight SP (2012) Application of modified atmosphere packaging (gas flushing and active packaging) for extending the shelf life of Beauveria bassiana conidia at high temperatures. Biol Control 61:78–88

    Article  CAS  Google Scholar 

  • Feng MG, Poprawski TJ, Khachatourians GG (1994) Production, formulation and application of the entomopathogenic fungus Beauveria bassiana for insect control: current status. Biocontrol Sci Techn 4:3–34

    Article  Google Scholar 

  • Fernandes EKK, Rangel DEN, Moraes AML, Bittencourt VREP, Roberts DW (2007) Variability in tolerance to UV-B radiation among Beauveria spp. isolates. J Invertebr Pathol 96:237–243

    Article  CAS  Google Scholar 

  • Fernandes EKK, Rangel DEN, Moraes AML, Bittencourt VREP, Roberts DW (2008) Cold activity of Beauveria and Metarhizium, and thermotolerance of Beauveria. J Invertebr Pathol 98:69–78

    Article  Google Scholar 

  • Fernandes EKK, Rangel DEN, Braga GUL, Roberts DW (2015) Tolerance of entomopathogenic fungi to ultraviolet radiation: a review on screening of strains and their formulation. Curr Genet 61(3):427–440

    Article  CAS  Google Scholar 

  • Ferron P (1981) Pest control by the fungi Beauveria and Metarhizium. pp. 465–483. In: Burges HD (ed) Microbial control of pest and plant diseases 1970–1980. Academic Press, London, New York, p 949

    Google Scholar 

  • Foster JP (2000) A process for coating biological pesticides and compositions therefrom, U. S. Patent 6,113,950, 19 pp

  • Furlong MJ, Groden E (2001) Evaluation of synergistic interactions between the Colorado potato beetle (Coleoptera: Chrysomelidae) pathogen Beauveria bassiana and the insecticides, imidacloprid, and cyromazine. J Econ Entomol 94(2):344–356

    Article  CAS  Google Scholar 

  • Ghikas DV, Kouvelis VN, Typas MA (2010) Phylogenetic and biogeographic implications inferred by mitochondrial intergenic region analyses and ITS1-5.8S-ITS2 of the entomopathogenic fungi Beauveria bassiana and B. brongniartii. BMC Microbiol 10:174

    Article  CAS  Google Scholar 

  • Gibson DM, Donzelli BGG, Krasnoff SB, Keyhani NO (2014) Discovering the secondary metabolite potential encoded within entomopathogenic fungi. Nat Prod Rep 31:1287–1305

    Article  CAS  Google Scholar 

  • Glare TR, Caradus J, Gelernter W, Jackson T, Keyhani N, Kohl J, Marrone P, Morin L, Stewart A (2012) Have biopesticides come of age? Trends Biotechnol 30:250–258

    Article  CAS  Google Scholar 

  • Goettel MS, Koike M, Kim JJ, Aiuchi D, Shinya R, Brodeur J (2008) Potential of Lecanicillium spp. for management of insects, nematodes and plant diseases. J Invertebr Pathol 98:256–261

    Article  CAS  Google Scholar 

  • Gómez-Vidal S, Salinas J, Tena M, Lopez-Llorca LV (2009) Proteomic analysis of date palm (Phoenix dactylifera L.) responses to endophytic colonization by entomopathogenic fungi. Electrophoresis 30(17):2996–3005

    Article  CAS  Google Scholar 

  • Gonzalez F, Tkaczuk C, Dinu MM, Fiedler Z, Vidal S, Zchori-Fein E, Messelink GJ (2016) New opportunities for the integration of microorganisms into biological pest control systems in greenhouse crops. J Pest Sci 89(2):295–311

    Article  Google Scholar 

  • Gurulingappa P, Sword GA, Murdoch G, McGee PA (2010) Colonization of crop plants by fungal entomopathogens and their effects on two insect pests when in planta. Biol Control 55(1):34–41

    Article  Google Scholar 

  • Hajek AE, St. Leger RJ (1994) Interactions between fungal pathogens and insect hosts. Annu Rev Entomol 39:293–322

    Article  Google Scholar 

  • Hallsworth JE, Magan N (1994) Effect of carbohydrate type and concentration on polyhydroxy alcohol and trehalose content of conidia of three entomopathogenic fungi. Microbiology 140:2705–2713

    Article  CAS  Google Scholar 

  • Hedgecock SD, Moore D, Higgins PM, Prior C (1995) Influence of moisture content on temperature tolerance and storage of Metarhizium flavoviridae in an oil formulation. Biocontrol Sci Technol 5:371–377

    Article  Google Scholar 

  • Hegedus DD, Bidochka MJ, Miranpuri GS, Khachatourians GG (1992) A comparison of the virulence, stability and cell-wall-surface characteristics of three spore types produced by the entomopathogenic fungus Beauveria bassiana. Appl Microbiol Biotechnol 36:785–789

    Article  Google Scholar 

  • Herrero N, Duenas E, Quesada-Moraga E, Zabalgogeazcoa I (2012) Prevalence and diversity of viruses in the entomopathogenic fungus Beauveria bassiana. Appl Environ Microbiol 78:8523–8530

    Article  CAS  Google Scholar 

  • Hesketh H, Roy HE, Eilenberg J, Pell JK, Halls RS (2010) Challenges in modelling complexity of fungal entomopathogens in semi-natural populations of insects. Biocontrol 55:55–73

    Article  Google Scholar 

  • Higuchi T, Takeshi S, Shuji S, Mizobata T, Kawata Y, Nagai J (1997) Development of biorational pest control formulation against longicorn beetles using a fungus, Beauveria brongniartii (Sacc.) Petch. J Ferment Bioeng 84:236–243

    Article  CAS  Google Scholar 

  • Holder DJ, Keyhani NO (2005) Adhesion of the entomopathogenic fungus Beauveria (Cordyceps) bassiana to substrata. Appl Environ Microbiol 71:5260–5266

    Article  CAS  Google Scholar 

  • Holder DJ, Kirkland BH, Lewis MW, Keyhani NO (2007) Surface characteristics of the entomopathogenic Fungus Beauveria (Cordyceps) bassiana. Microbiology 53:3448–3457

    Article  CAS  Google Scholar 

  • Hong TD, Ellis RH, Moore D (1997) Development of a model to predict the effect of temperature and moisture on fungal spore longevity. Ann Bot 79:121–128

    Article  Google Scholar 

  • Humber RA (2008) Evolution of entomopathogenicity in fungi. J Invertebr Pathol 98:262–266

    Article  Google Scholar 

  • Humphreys AM, Matewele P, Trinci APJ (1989) Effects of water activity on morphology, growth and blastospore production of Metarhizium anisopliae, Beauveria bassiana and Paecilomyces farinosus in batch and fed-batch culture. Mycol Res 92:257–264

    Article  Google Scholar 

  • Hunt TR, Moore D, Higgins PM, Prior C (1994) Effect of sunscreens, irradiance and resting periods on the germination of Metarhizium flavoviridae conidia. Entomophaga 39:313–322

    Article  Google Scholar 

  • Inglis GD, Goettel MS, Johnson DL (1993) Persistence of the entomopathogenic fungus Beauveria bassiana on phylloplanes of crested wheatgrass and alfalfa. Biol Control 3:258–270

    Article  Google Scholar 

  • Inglis GD, Goettel MS, Johnson DL (1995) Influence of ultraviolet light protectants on persistence of the entomopathogenic fungus, Beauveria bassiana. Biol Control 5:581–590

    Article  Google Scholar 

  • Inglis GD, Ivie TJ, Duke GM, Goettel MS (2000) Influence of rain and conidial formulation on persistence of Beauveria bassiana on potato leaves and Colorado potato beetle larvae. Biol Control 18:55–64

    Article  Google Scholar 

  • Inglis GD, Goettel MS, Butt TM, Strasser H (2001) Use of hyphomycetous fungi for managing insect pests. In: Butt TM, Jackson C, Magan N (eds) Fungi as biocontrol agents. Progress, problems and potential. CABI Publishing, Wallingford, pp 23–69

    Chapter  Google Scholar 

  • Islam MT, Omar DB (2012) Combined effect of Beauveria bassiana with neem on virulence of insect in case of two application approaches. J Anim Plant Sci 22(1):77–82

    Google Scholar 

  • Islam MT, Castle SJ, Ren S (2010) Compatibility of the insect pathogenic fungus Beauveria bassiana with neem against sweetpotato whitefly, Bemisia tabaci, on eggplant. Entomol Exp Appl 134(1):28–34

    Article  Google Scholar 

  • Jaber LR (2015) Grapevine leaf tissue colonization by the fungal entomopathogen Beauveria bassiana s.l. and its effect against downy mildew. Biocontrol 60:103–112

    Article  Google Scholar 

  • Jackson MA (1997) Optimizing nutritional conditions for the liquid culture production of effective fungal biological control agents. J Ind Microbiol Biotechnol 19:180–187

    Article  CAS  Google Scholar 

  • Jackson MA, Jaronski ST (2009) Production of microsclerotia of the fungal entomopathogen Metarhizium anisopliae and their potential for use as a biocontrol agent for soil-inhabiting insects. Mycol Res 113:842–850

    Article  CAS  Google Scholar 

  • Jackson MA, Mascarin GM (2016) Stable fungal blastospores and methods for their production, stabilization and use. Patent US20160075992

  • Jackson MA, Dunlap CA, Jaronski S (2010) Ecological considerations in producing and formulating fungal entomopathogens for use in insect biocontrol. Biocontrol 55:129–145

    Article  Google Scholar 

  • Jaronski ST (1997) New paradigms in formulating mycoinsecticides. In: Goss GR, Hopkinson MJ, Collins HM (eds) Pesticide formulations and application systems, 17th volume, ASTM STP 1328. American Society for Testing and Materials, Philadelphia, pp 99–114

    Chapter  Google Scholar 

  • Jaronski ST (2010) Ecological factors in the inundative use of fungal entomopathogens. Biocontrol 55:159–185

    Article  Google Scholar 

  • Jaronski ST (2013) Mass production on entomopathogenic fungi: state of the art. In: Morales-Ramos JA, Rojas MG, Shapiro-Ilan DI (eds) Mass production of beneficial organisms. Elsevier Inc., Amsterdam, pp 357–415

    Google Scholar 

  • Jaronski ST, Jackson MA (2012) Mass production of entomopathogenic hypocreales. In: Lacey LA (ed) Manual of techniques in invertebrate pathology. Academic Press, San Diego, pp 257–286

    Google Scholar 

  • Jenkins NE, Lomer CJ (1994) Development of a new procedure for the mass production of conidia of Metarhizium flavoviride. Bull OILB/SROP 17(3):181–184

    Google Scholar 

  • Jenkins NE, Barbarin AM, Rajotte EG, Thomas MB (2013) Compositions and methods for bed bug control using entomopathogenic fungi. Patent WO2013116454

  • Jin X, Grigas KE, Johnson CA, Perry P, Miller DW (1993) Method for storing fungal conidia. U.S. Patent 5,989,898

  • Kangassalo K, Valtonen TM, Roff D, Pölkki M, Dubovskiy IM, Sorvari J, Rantala MJ (2015) Intra- and trans-generational effects of larval diet on susceptibility to an entomopathogenic fungus, Beauveria bassiana, in the greater wax moth, Galleria mellonella. J Evol Biol 28(8):1453–1464

    Article  CAS  Google Scholar 

  • Karban R, Johnson MTJ (2011) The ecology and evolution of induced resistance against herbivores. Funct Ecol 25(2):339–347

    Article  Google Scholar 

  • Khan AL, Hamayun M, Khan SA, Kang SM, Shinwari ZK, Kamran M, Ur Rehman S, Kim JG, Lee IJ (2012) Pure culture of Metarhizium anisopliae LHL07 reprograms soybean to higher growth and mitigates salt stress. World J Microbiol Biotechnol 28(4):1483–1494

    Article  CAS  Google Scholar 

  • Kim JS, Je YH (2010) A novel biopesticide production: attagel-mediated precipitation of chitinase from Beauveria bassiana SFB-205 supernatant for thermotolerance. Appl Microbiol Biotechnol 87(5):1639–1648

    Article  CAS  Google Scholar 

  • Kim JS, Je YH, Skinner M, Parker BL (2013) An oil-based formulation of Isaria fumosorosea blastospores for management of greenhouse whitefly Trialeurodes vaporariorum (Homoptera: Aleyrodidae). Pest Manag Sci 69(5):576–581

    Article  CAS  Google Scholar 

  • Kona Coffee farmers Association (2012) Controlling the coffee berry borer. https://www.youtube.com/watch?v=yQbqIrA9BiA&spfreload=10. Accessed 11 July 2016

  • Labbe RM, Gillespie DR, Cloutier C, Brodeur J (2009) Compatibility of an entomopathogenic fungus with a predator and parasitoid in the biological control of greenhouse whitefly. Biocontrol Sci Technol 19(4):429–446

    Article  Google Scholar 

  • Lacey LA, Kaya H (2007) Field Manual of Techniques in Invertebrate Pathology. In: Application and evaluation of pathogens for control of insects and other invertebrate pests, 2nd edn. Springer, Dordrecht, p 870

    Google Scholar 

  • Lacey LA, Wright SP, Kirk AA (2008) Entomopathogenic fungi for control of Bemisia tabaci biotype B: foreign exploration, research and implementation. In: Gould J, Hoelmer K, Goolsby J (eds) Classical biological control of Bemisia tabaci in the United States—a review of interagency research and implementation. Springer, Dordrecht, pp 33–69

    Chapter  Google Scholar 

  • Lacey LA, Grzywacz D, Shapiro-Ilan DI, Frutos R, Brownbridge M, Goettel MS (2015) Insect pathogens as biological control agents: back to the future. J Invertebr Pathol 132:1–41

    Article  CAS  Google Scholar 

  • Landa BB, López-Díaz C, Jiménez-Fernández D, Montes-Borrego M, Muñoz-Ledesma FJ, Ortiz-Urquiza A, Quesada-Moraga E (2013) In-planta detection and monitorization of endophytic colonization by a Beauveria bassiana strain using a new-developed nested and quantitative PCR-based assay and confocal laser scanning microscopy. J Invertebr Pathol 114(2):128–138

    Article  CAS  Google Scholar 

  • Leland JE, Behle RW (2005) Coating Beauveria bassiana with lignin for protection from solar radiation and effects on pathogenicity to Lygus lineolaris (Heteroptera: Miridae). Biocontrol Sci Technol 15(3):309–320

    Article  Google Scholar 

  • Li ZZ, Alves SB, Roberts DW, Fan MZ, Delalibera I, Tang J, Lopes RB, Faria M, Rangel DEN (2010) Biological control of insects in Brazil and China: history, current programs and reasons for their successes using entomopathogenic fungi. Biocontrol Sci Technol 20:117–136

    Article  Google Scholar 

  • Lohse R, Jakobs-Schonwandt D, Patel AV (2014) Screening of liquid media and fermentation of an endophytic Beauveria bassiana strain in a bioreactor. AMB Express 4:47

    Article  CAS  Google Scholar 

  • Lohse R, Jakobs-Schönwandt D, Vidal S, Patel AV (2015) Evaluation of new fermentation and formulation strategies for a high endophytic establishment of Beauveria bassiana in oilseed rape plants. Biol Control 88:26–36

    Article  CAS  Google Scholar 

  • Lopes RB, Laumann RA, Moore D, Oliveira MWM, Faria M (2014) Combination of the fungus Beauveria bassiana and pheromone in attract and kill strategy against the banana weevil Cosmopolites sordidus. Entomol Exp Appl 151(1):75–85

    Article  CAS  Google Scholar 

  • Lopez DC, Sword GA (2015) The endophytic fungal entomopathogens Beauveria bassiana and Purpureocillium lilacinum enhance the growth of cultivated cotton (Gossypium hirsutum) and negatively affect survival of the cotton bollworm (Helicoverpa zea). Biol Control 89:53–60

    Article  Google Scholar 

  • Lord JC (2005) From Metchnikoff to Monsanto and beyond: the path of microbial control. J Invertebr Pathol 89:19–29

    Article  Google Scholar 

  • Magan N (2001) Physiological approaches to improving the ecological fitness of fungal biocontrol agents. In: Butt TM, Jackson CW, Magan N (eds) Fungi as biocontrol agents. CAB Publishing, Oxon, pp 239–325

    Chapter  Google Scholar 

  • Markets and Markets (2015) Biopesticides market by type (bioinsecticides, biofungicides, bioherbicides, and bionematicides), origin (beneficial insects, microbials, and biochemical), mode of application, formulation, crop type and region—global forecast to 2020. http://www.marketsandmarkets.com/Market-Reports/biopesticides-267.html. Accessed 06 June 2016

  • Marrone PG (2014) The market and potential for biopesticides. In: Gross AD, Coats JR, Duke SO, Seiber JN (eds) Biopesticides: state of the art and future opportunities, vol 1172. ACS Symposium Series, Washington, pp 245–258

    Google Scholar 

  • Mascarin GM, Kobori NN, Quintela ED, Delalibera I Jr (2013) The virulence of entomopathogenic fungi against Bemisia tabaci biotype B (Hemiptera: Aleyrodidae) and their conidial production using solid substrate fermentation. Biol Control 66:209–218

    Article  Google Scholar 

  • Mascarin GM, Jackson MA, Kobori NN, Behle RW, Delalibera I Jr (2015a) Liquid culture fermentation for rapid production of desiccation tolerant blastospores of Beauveria bassiana and Isaria fumosorosea strains. J Invertebr Pathol 127:11–20

    Article  CAS  Google Scholar 

  • Mascarin GM, Jackson MA, Kobori NN, Behle RW, Dunlap CA, Delalibera I Jr (2015b) Glucose concentration alters dissolved oxygen levels in liquid cultures of Beauveria bassiana and affects the formation and efficacy of blastospores. Appl Microbiol Biotechnol 99(16):6653–6665

    Article  CAS  Google Scholar 

  • Mascarin GM, Jackson MA, Behle RW, Kobori NN, Delalibera I Jr (2016) Improved shelf life of dried Beauveria bassiana blastospores using convective drying and active packaging processes. Appl Microbiol Biotech. doi:10.1007/s00253-016-7597-2

    Google Scholar 

  • McCoy C, Quintela ED, Faria M (2002) Environmental persistence of entomopathogenic fungi. In: Baur ME, Fuxa JR (eds) Factors affecting the survival of entomopathogens. Louisiana State University Agricultural Center, Southern Cooperative Series, Bulletin

    Google Scholar 

  • McDougall P (2016) The cost of new agrochemical product discovery, development and registration in 1995, 2000 and 2005–8 and 2010 to 2014. R&D Expenditure in 2014 and Expectations for 2019. Final Report for Crop Life America and the European Crop Protection Association. http://www.croplifeamerica.org/wp-content/uploads/2016/04/Phillips-McDougall-Final-Report_4.6.16.pdf. Accessed 06 June 2016

  • Melzer MJ, Bidochka MJ (1998) Diversity of double-stranded RNA viruses within populations of entomopathogenic fungi and potential implications for fungal growth and virulence. Mycologia 90:586–594

    Article  CAS  Google Scholar 

  • Meyling NV, Eilenberg N (2007) Ecology of the entomopathogenic fungi Beauveria bassiana and Metarhizium anisopliae in temperate agroecosystems: potential for conservation biological control. Biol Control 43:145–155

    Article  Google Scholar 

  • Moore D, Bridge PD, Higgins PM, Bateman RP, Prior C (1993) Ultraviolet radiation damage to Metarhizium flavoviridae conidia and the protection given by vegetable and mineral oils and chemical sunscreens. Ann Appl Biol 122:605–616

    Article  CAS  Google Scholar 

  • Noma T, Strickler K (1999) Factors affecting Beauveria bassiana for control of Lygus bug (Hemiptera: Miridae) in alfalfa seed fields. J Agric Urban Entomol 16(4):215–233

    Google Scholar 

  • Ortiz-Urquiza A, Keyhani NO (2013) Action on the surface: entomopathogenic fungi versus the insect cuticle. Insects 4:357–374

    Article  Google Scholar 

  • Ortiz-Urquiza A, Riveiro-Miranda L, Santiago-Álvarez C, Quesada-Moraga E (2010) Insect-toxic secreted proteins and virulence of the entomopathogenic fungus Beauveria bassiana. J Invertebr Pathol 105(3):270–278

    Article  CAS  Google Scholar 

  • Ortiz-Urquiza A, Luo Z, Keyhani NO (2015) Improving mycoinsecticides for insect biological control. Appl Microbiol Biotech 99(3):1057–1068

    Article  CAS  Google Scholar 

  • Ownley BH, Griffin MR, Klingeman WE, Gwinn KD, Moulton JK, Pereira RM (2008) Beauveria bassiana: endophytic colonization and plant disease control. J Invertebr Pathol 98:267–270

    Article  CAS  Google Scholar 

  • Pedrini N, Ortiz-Urquiza A, Huarte-Bonnet C, Fan Y, Juárez MP, Keyhani NO (2015) Tenebrionid secretions and a fungal benzoquinone oxidoreductase form competing components of an arms race between a host and pathogen. Proc Natl Acad Sci 112(28):E3651–E3660

    Article  CAS  Google Scholar 

  • Pendland JC, Hung SY, Boucias DG (1993) Evasion of host defense by in vivo-produced protoplast-like cells of the insect mycopathogen Beauveria bassiana. J Bacteriol 175:5962–5969

    CAS  Google Scholar 

  • Pham TA, Kim JJ, Kim K (2009) Production of blastospore of entomopathogenic Beauveria bassiana in a submerged batch culture. Mycobiology 37:218–224

    Article  CAS  Google Scholar 

  • Posada F, Vega FE (2006) Establishment of the fungal entomopathogens Beauveria bassiana (Ascomycota:Hypocreales) as an endophyte in cocoa seedlings (Theobroma cacao). Mycologia 97:208–213

    Google Scholar 

  • Posada F, Aime MC, Peterson SW, Rehner SA, Vega FE (2007) Inoculation of coffee plants with the fungal entomopathogen Beauveria bassiana (Ascomycota: Hypocreales). Mycol Res 111(6):748–757

    Article  CAS  Google Scholar 

  • Prior CP, Jollands G, Le P (1988) Infectivity of oil and water formulations of Beauveria bassiana (Deuteromycotina: Hyphomycetes) to the cocoa weevil pest Pantorhytes plutus (Coleoptera: Curculionidae). J Invertebr Pathol 52:66–72

    Article  Google Scholar 

  • Quesada-Moraga E, Vey A (2003) Intra-specific variation in virulence and in vitro production of macromolecular toxins active against locust by Beauveria bassiana and effects of in vivo and in vitro passage on these factors. Biocontrol Sci Technol 13:323–340

    Article  Google Scholar 

  • Quesada-Moraga E, Maranhão EA, Valverde-Garcia P, Santiago-Álvarez C (2006) Selection of Beauveria bassiana isolates for control of the whiteflies Bemisia tabaci and Trialeurodes vaporarium on the basis of their virulence, thermal requirement and toxicogenic activity. Biol Control 36:274–287

    Article  Google Scholar 

  • Quesada-Moraga E, Munoz-Ledesma FJ, SantiagoAlvarez C (2009) Systemic protection of Papaver somniferum L. against Iraella luteipes (Hymenoptera: Cynipidae) by an endophytic strain of Beauveria bassiana (Ascomycota: Hypocreales). Environ Entomol 38:723–730

    Article  CAS  Google Scholar 

  • Quesada-Moraga E, López-Diaz C, Landa BB (2014) The hidden habit of the entomopathogenic fungus Beauveria bassiana: first demonstration of vertical plant transmission. PLoS ONE 9(2):e89278

    Article  CAS  Google Scholar 

  • Rangel DEN, Braga GUL, Fernandes EKK, Keyser CA, Hallsworth JE, Roberts DW (2015) Stress tolerance and virulence of insect-pathogenic fungi are determined by environmental conditions during conidial formation. Curr Genet 61(3):383–404

    Article  CAS  Google Scholar 

  • Ravensberg WJ (2011) A roadmap to the successful development and commercialization of microbial pest control products for control of arthropods. Springer, Dordrecht

    Book  Google Scholar 

  • Ravensberg WJ (2015) Crop protection in 2010: towards a natural, efficient, safe and sustainable approach. International Symposium on Biopesticides, Swansea University, UK, 7–9 Sept 2015. http://www.ibma-global.org/upload/documents/201509wrpresentationinswansea.pdf. Accessed 11 Feb 2016

  • Reay SD, Brownbridge M, Gicquel B, Cummings NJ, Nelson TL (2010) Isolation and characterization of endophytic Beauveria spp. (Ascomycota: Hypocreales) from Pinus radiata in New Zealand forests. Biol Control 54(1):52–60

    Article  Google Scholar 

  • Rehner SA, Buckley EP (2005) A Beauveria phylogeny inferred from ITS and EF1-a sequences: evidence for cryptic diversification and links to Cordyceps teleomorphs. Mycologia 97:84–98

    Article  CAS  Google Scholar 

  • Rehner SA, Posada F, Buckley EP, Infante F, Castillo A, Vega FE (2006) Phylogenetic origins of African and Neotropical Beauveria bassiana s.l. pathogens of the coffee berry borer, Hypothenemus hampei. J Invertebr Pathol 93:11–23

    Article  Google Scholar 

  • Rehner SA, Minnis AM, Sung G-H, Luangsa-ard JJ, Devotto L, Humber RA (2011) Phylogeny and systematics of the anamorphic, entomopathogenic genus Beauveria. Mycologia 103:1055–1073

    Article  Google Scholar 

  • Rodríguez CML, Góngora BCE (2005) Transformation of Beauveria bassiana Bb9205 with pr1A, pr1 J, and ste1 genes of Metarhizium anisopliae and evaluation of the pathogenicity on the coffee berry borer. Rev Colomb Entomol 31(1):51–58

    Google Scholar 

  • Rombach MC (1989) Production of Beauveria bassiana (Deutoromycotina, Hyphomycetes) sympoduloconidia in submerged culture. Entomophaga 34:45–52

    Article  Google Scholar 

  • Samsinakova A (1966) Growth and sporulation of submerged cultures of the fungus Beauveria bassiana in various media. J Invertebr Pathol 8:395–400

    Article  Google Scholar 

  • Samson RA, Evans HC (1982) Two new Beauveria spp. from South America. J Invertebr Pathol 39:93–97

    Article  Google Scholar 

  • Shanley RP, Keena M, Wheeler MM, Leland J, Hajek AE (2009) Evaluating the virulence and longevity of non-woven fiber bands impregnated with Metarhizium anisopliae against the Asian longhorned beetle, Anoplophora glabripennis (Coleoptera: Ceranbycidae). Biol Control 50:94–102

    Article  Google Scholar 

  • Shipp L, Kapongo JP, Kevan P, Sutton J, Broadbent B (2006) Bumblebees: an effective delivery system for microbial control agents for arthropod pest and disease management. IOBC WPRS Bull 29:47–51

    Google Scholar 

  • Sigwart M, Graillot B, Lopez CB, Besse S, Bardin M, Nicot PC, Lopez-Ferber M (2015) Resistance to bio-insecticides or how to enhance their sustainability: a review. Front Plant Sci 6:381

    Google Scholar 

  • Sparks TC, Nauen R (2014) IRAC: mode of action classification and insecticide resistance management. Pestic Biochem Physiol 121:122–128

    Article  CAS  Google Scholar 

  • St. Leger RJ, Wang C (2010) Genetic engineering of fungal biocontrol agents to achieve greater efficacy against insect pests. Appl Microbiol Biotechnol 85:901–907

    Article  CAS  Google Scholar 

  • Storm CG, Wakefield ME, Chambers J (2011) Control of arthropod infestation using particles comprising an entomopathogen and wax. Patent WO2011157983 A1

  • Sung G-H, Hywel-Jones NL, Sung J-M, Luangsa-ard JJ, Shrestha B, Spatafora JW (2007) Phylogenetic classification of Cordyceps and the clavicipitaceous fungi. Stud Mycol 57:5–59

    Article  Google Scholar 

  • Tefera T, Vidal S (2009) Effect of inoculation method and plant growth medium on endophytic colonization of sorghum by the entomopathogenic fungus Beauveria bassiana. Biocontrol 54(5):663–669

    Article  Google Scholar 

  • Ugine T (2011) The effect of temperature and exposure to Beauveria bassiana on tarnished plant bug Lygus lineolaris (Heteroptera: Miridae) population dynamics, and the broader implications of treating insects with entomopathogenic fungi over a range of temperatures. Biol Control 59(3):373–383

    Article  Google Scholar 

  • Ugine TA, Wraight SP, Sanderson JP, Enkegaard A (2005) Differential susceptibility of western flower thrips (Frankliniella occidentalis) to Beauveria bassiana, as a function of host plant species. Bull OILB/SROP 28(1):271–274

    Google Scholar 

  • Ugine TA, Jenkins NE, Gardescu S, Hajek AE (2013) Comparing fungal band formulations for Asian longhorned beetle biological control. J Invertebr Pathol 113:240–246

    Article  Google Scholar 

  • Valero-Jiménez CA, Debets AJM, van Kan JAL, Schoustra SE, Takken W, Zwaan BJ, Koenraadt CJM (2014) Natural variation in virulence of the entomopathogenic fungus Beauveria bassiana against malaria mosquitoes. Malar J 13:479

    Article  Google Scholar 

  • van der Sluijs Jeroen P, Simon-Delso N, Goulson D, Maxim L, Bonmatin JM, Belzunces LP (2013) Neonicotinoids, bee disorders and the sustainability of pollinator services. Curr Opin Environ Sustain 5(3–4):293–305

    Article  Google Scholar 

  • Vega FE, Jackson MA, Mercadier M, Poprawski TJ (2003) The impact of nutrition on spore yields for various fungal entomopathogens in liquid culture. World J Microbiol Biotechnol 19:363–368

    Article  CAS  Google Scholar 

  • Vega FE, Dowd PF, Lacey LA, Pell JK, Jackson DM, Klein MG (2007) Dissemination of beneficial microbial agents by insects. In: Lacey LA, Kaya HK (eds) Field manual of techniques in invertebrate pathology, 2nd edn. Springer, New York, pp 127–146

    Chapter  Google Scholar 

  • Vega FE, Posada F, Aime MC, Pava-Ripoll M, Infante F, Rehner AS (2008) Entomopathogenic fungal endophytes. Biol Control 46:72–82

    Article  Google Scholar 

  • Vicentini S, Faria M, De Oliveira RVM (2001) Screening of Beauveria bassiana (Deuteromycotina: Hyphomycetes) Isolates against nymphs of Bemisia tabaci (Genn.) biotype B (Hemiptera: Aleyrodidae) with description of a bioassay method. Neotrop Entomol 30:97–103

    Article  Google Scholar 

  • Vidal S, Jaber LR (2015) Entomopathogenic fungi as endophytes: plant-endophyte-herbivore interaction and prospects for use in biological control. Curr Sci 109(1):46–54

    Google Scholar 

  • Vidal C, Fargues J, Lacey LA, Jackson MA (1998) Effect of various liquid culture media on morphology, growth, propagule production, and pathogenic activity to Bemisia argentifolii of the entomopathogenic Hyphomycete, Paecilomyces fumosoroseus. Mycopathologia 143:33–46

    Article  CAS  Google Scholar 

  • Wagner BL, Lewis LC (2000) Colonization of corn, Zea mays, by the entomopathogenic fungus Beauveria bassiana. Appl Environ Microbiol 66:3468–3473

    Article  CAS  Google Scholar 

  • Wojda I, Kowalski P, Jakubwicz T (2005) Humoral immune response of Galleria mellonella larvae after infection by Beauveria bassiana under optimal and heat-shock conditions. J Insect Physiol 55:525–531

    Article  CAS  Google Scholar 

  • Wraight SP, Ramos ME (2002) Application parameters affecting field efficacy of Beauveria bassiana foliar treatments against Colorado potato beetle Leptinotarsa decemlineata. Biol Control 23:164–178

    Article  Google Scholar 

  • Wraight SP, Ramos ME (2005) Synergictic interaction between Beauveria bassiana- and Bacillus thuringiensis tenebrionis-based biopesticides applied against field populations of Colorado potato beetle larvae. J Invertebr Pathol 90:139–150

    Article  CAS  Google Scholar 

  • Wraight SP, Carruthers RI, Jaronski ST, Bradley CA, Garza CJ, Galaini-Wraight S (2000) Evaluation of the entomopathogenic fungi Beauveria bassiana and Paecilomyces fumosoroseus for microbial control of the silverleaf whitefly, Bemisia argentifolii. Biol Control 17:203–217

    Article  Google Scholar 

  • Xiao G, Ying SH, Zheng P, Wang ZL, Zhang S, Xie XQ, Shang Y, St. Leger RJ (2012) Genome perspectives on the evolution of fungal entomopathogenicity in Beauveria bassiana. Sci Rep 2:483

    Google Scholar 

  • XiaoFang R, ZhenBang L, Hong Z, Bo H, ZengZhi L (2011) Generation of transgenic Beauveria bassiana strain with Vip3Aa gene and its enhanced virulence on Dendrolimus punctatus. J Anhui Agric Univ 38(5):736–741

    Google Scholar 

  • Zimmermann G (2007) Review on safety of the entomopathogenic fungi Beauveria bassiana and Beauveria brongniartii. Biocontrol Sci Technol 17:553–596

    Article  Google Scholar 

Download references

Acknowledgments

We thank Mark A. Jackson (USDA, Peoria) and anonymous reviewers for their valuable comments and suggestions. This work was partly supported by EMBRAPA’s research Grants No 02.11.07.005.00.00 and 02.13.12.003.00.00. Mention of trade names or commercial products in this publication is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the U.S. Department of Agriculture.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriel Moura Mascarin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mascarin, G.M., Jaronski, S.T. The production and uses of Beauveria bassiana as a microbial insecticide. World J Microbiol Biotechnol 32, 177 (2016). https://doi.org/10.1007/s11274-016-2131-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11274-016-2131-3

Keywords

Navigation