Skip to main content
Log in

Integration between bacterial consortium and magnetite (Fe3O4) nanoparticles for the treatment of oily industrial wastewater

  • Original Paper
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The study aimed to investigate the efficiency of exogenous bacterial consortium (Enterobacter cloacae and Pseudomonas otitidis) decorated (immobilized) with Fe3O4 Nanoparticles for the treatment of petroleum hydrocarbon-contaminated wastewater. Glycine coated magnetite Nanoparticles (Fe3O4 NPs) were prepared using reverse co-precipitation method and were characterized using X-ray diffraction, transmission and scanning electron microscopy and vibrating sample magnetometer. They were used to decorate exogenous bacterial consortium (Enterobacter cloacae and Pseudomonas otitidis) at 3 different Fe3O4/bacteria ratios (1:1, 1:3 and 3:1 w/w). Bioremediation of oil contaminated wastewater collected from one of the petroleum distribution companies, Alexandria was conducted for 168 h using Fe3O4/bacterial association at the best ratio (3:1) and compared with non-decorated consortium and the indigenous bacteria in the control. Analysis indicated crystalline structure of Fe3O4 NPs with spherical particles (size: 15–20 nm) and superparamagnetic properties. Glycine modified-Fe3O4 exhibited high ability to immobilize bacteria which acquired its magnetic properties. The highest coating efficiency (92%) was achieved at 3:1 Fe3O4/bacteria ratio after 1 h. This ratio positively affected bacterial growth reaching the highest growth rate (5.07 fold higher than the control) after 4 h. The highest removal efficiencies of the total suspended solids (TSS), chemical oxygen demands (COD), oil and grease (O&G) and total petroleum hydrocarbons (TPH) recording 96, 65.4, 83.9 and 85% reaching residual concentrations of 9.5, 598, 99 and 60 mg/l respectively were achieved after 4 h by the Fe3O4-bacteria assembly. Compared with the maximum permissible limits of the tested parameters, TSS residue was highly compiled with its limit (50 mg/l), while COD, O&G and TPH were 7.5, 9.9, and 120-folds higher than their limits (100, 15 and 0.5 mg/l respectively). To the best of our knowledge it is first time to use integrated Enterobacter cloacae and Pseudomonas otitidis consortium decorated with Fe3O4 NPs for the treatment of petroleum hydrocarbon-contaminated wastewater. The proposed system proved to be a very efficient, economical and applicable for the removal of the included contaminants in very short running time which increases its biotechnological added value.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Abdelwahab O, Amin N, El-Ashtoukhy EZ (2009) Electrochemical removal of phenol from oil refinery wastewater. J Hazard Mater 163:711–716

    PubMed  CAS  Google Scholar 

  • Al Zarooni M, Elshorbagy W (2006) Characterization and assessment of Al Ruwais refinery wastewater. J Hazard Mater 136:398–405

    PubMed  CAS  Google Scholar 

  • Alizadeh A, Khodaei MM, Beygzadeh M, Kordestani D, Feyzi M (2012) Biguanide-functionalized Fe3O4/SiO2 magnetic nanoparticles: an efficient heterogeneous organosuperbase catalyst for various organic transformations in aqueous media. Bull Korean Chem Soc 33:2546–2552

    CAS  Google Scholar 

  • Altaş L, Büyükgüngör H (2008) Sulfide removal in petroleum refinery wastewater by chemical precipitation. J Hazard Mater 153:462–469

    PubMed  Google Scholar 

  • Ansari F, Grigoriev P, Libor S, Tothill IE, Ramsden JJ (2009) DBT degradation enhancement by decorating Rhodococcus erythropolis IGST8 with magnetic Fe3O4 nanoparticles. Biotechnol Bioeng 102(5):1505–1512

    PubMed  CAS  Google Scholar 

  • Baghaie AH, Jabari AG (2019) Effect of nano Fe-oxide and endophytic fungus (P. indica) on petroleum hydrocarbons degradation in an arsenic contaminated soil under barley cultivation. J Environ Health Sci Eng 1–9

  • Bardania H, Raheb J, Mohammad-Beigi H, Rasekh B, Arpanaei A (2013) Desulfurization activity and reusability of magnetite nanoparticle–coated Rhodococcus erythropolis FMF and R. erythropolis IGTS8 bacterial cells. Biotechnol Appl Biochem 60(3):323–329

    PubMed  CAS  Google Scholar 

  • Boniek D, Figueiredo D, dos Santos AFB, de Resende Stoianoff MA (2015) Biodesulfurization: a mini review about the immediate search for the future technology. Clean Technol Environ Policy 17:29–37

    Google Scholar 

  • Bruno A, Correa J, Peláez-Abellán E, Urones-Garrote E (2018) A novel method for the functionalization of aminoacids l-glycine, l-glutamic acid and l-arginine on maghemite/magnetite nanoparticles. J Magn Magn Mater 456:87–91

    CAS  Google Scholar 

  • Changmai M, Pasawan M, Purkait M (2019) Treatment of oily wastewater from drilling site using electrocoagulation followed by microfiltration. Sep Purif Technol 210:463–472

    CAS  Google Scholar 

  • Chen J, Liu S, Qi X, Yan S, Guo Q (2018) Study and design on chemical oxygen demand measurement based on ultraviolet absorption. Sens Actuat B Chem 254:778–784

    CAS  Google Scholar 

  • Chen M, Zhu L, Chen J, Yang F, Tang CY, Guiver MD, Dong Y (2020) Spinel-based ceramic membranes coupling solid sludge recycling with oily wastewater treatment. Water Res 169:115180

    PubMed  CAS  Google Scholar 

  • Choi O, Hu Z (2008) Size dependent and reactive oxygen species related nanosilver toxicity to nitrifying bacteria. Environ Sci Technol 42:4583–4588

    PubMed  CAS  Google Scholar 

  • Clesceri L, Greenberg A, Eaton A (1999) Standard methods for the examination of water and wastewater, 20th edn. American Public Health Association, American Water Work Association, Water Environment Federation, Washington, DC, APHA-AWWA-WEF

  • Crini G, Lichtfouse E (2019) Advantages and disadvantages of techniques used for wastewater treatment. Environ Chem Lett 17:145–155

    CAS  Google Scholar 

  • Darabdhara G, Boruah PK, Hussain N, Borthakur P, Sharma B, Sengupta P, Das MR (2017) Magnetic nanoparticles towards efficient adsorption of gram positive and gram negative bacteria: an investigation of adsorption parameters and interaction mechanism. Colloids Surf Physicochem Eng Aspects 516:161–170

    CAS  Google Scholar 

  • Das N, Chandran P (2011) Microbial degradation of petroleum hydrocarbon contaminants: an overview. Biotechnol Res Int. https://doi.org/10.4061/2011/941810

    Article  PubMed  Google Scholar 

  • Diya’uddeen BH, Daud WMAW, Aziz AA (2011) Treatment technologies for petroleum refinery effluents: a review. Process Saf Environ Prot 89:95–105

    Google Scholar 

  • El Bestawy E, Ahmed A-H, Amer R, Kashmeri RA (2014) Decontamination of domestic wastewater using suspended individual and mixed bacteria in batch system. J Bioremed Biodegred 5:1

    Google Scholar 

  • El-Bestawy E, El-KHeir EA, El-Fatah HA, Hassouna S (1998) Enhancement of bacterial efficiency for metal removal using mutation techniques. World J Microbiol Biotechnol 14:853–856

    CAS  Google Scholar 

  • El-Boubbou K, Gruden C, Huang X (2007) Magnetic glyco-nanoparticles: a unique tool for rapid pathogen detection, decontamination, and strain differentiation. J Am Chem Soc 129(44):13392–13393

    PubMed  CAS  Google Scholar 

  • El-Subruiti G, Eltaweil A, Sallam S (2019) Synthesis of active MFe2O4/γ-Fe2O3 nanocomposites (metal = Ni or Co) for reduction of nitro-containing pollutants and methyl orange degradation. NANO 14:1950125

    CAS  Google Scholar 

  • Escobar AM, Blanco MN, Martínez JJ, Cubillos JA, Romanelli GP, Pizzio LR (2019) Biomass derivative valorization using nano core-shell magnetic materials based on keggin-heteropolyacids: levulinic acid esterification kinetic study with n-butanol. J Nanomater 2019

  • Gubin SP, Koksharov YA, Khomutov G, Yurkov GY (2005) Magnetic nanoparticles: preparation, structure and properties. Russ Chem Rev 74:489

    CAS  Google Scholar 

  • Guobin S, Huaiying Z, Weiquan C, Jianmin X, Huizhou L (2005) Improvement of biodesulfurization rate by assembling nanosorbents on the surfaces of microbial cells. Biophys J 89(6):L58–L60

    PubMed  PubMed Central  CAS  Google Scholar 

  • He K, Chen G, Zeng G, Huang Z, Guo Z, Huang T, Peng M, Shi J, Hu L (2017) Applications of white rot fungi in bioremediation with nanoparticles and biosynthesis of metallic nanoparticles. Appl Microbiol Biotechnol 101:4853–4862

    PubMed  CAS  Google Scholar 

  • Henshaw PF, Zhu W (2001) Biological conversion of hydrogen sulphide to elemental sulphur in a fixed-film continuous flow photo-reactor. Water Res 35:3605–3610

    PubMed  CAS  Google Scholar 

  • Hou J, Liu F, Wu N, Ju J, Yu B (2016) Efficient biodegradation of chlorophenols in aqueous phase by magnetically immobilized aniline-degrading Rhodococcus rhodochrous strain. J Nanobiotechnol 14:5

    Google Scholar 

  • Jia X, Zhang S, Li J, Xia J, Yao R, Zhao X, Wu B, Bai F, Xiao Y (2019) Engineered bacterial biofloc formation enhancing phenol removal and cell tolerance. Appl Microbiol Biotechnol 1–13

  • Kafayati ME, Raheb J, Torabi Angazi M, Alizadeh S, Bardania H (2013) The effect of magnetic Fe3O4 nanoparticles on the growth of genetically manipulated bacterium, Pseudomonas aeruginosa (PTSOX4). Iran J Biotechnol 11(1):41–46

    CAS  Google Scholar 

  • Kalfa OM, Yalçınkaya Ö, Türker AR (2009) Synthesis of nano B2O3/TiO2 composite material as a new solid phase extractor and its application to preconcentration and separation of cadmium. J Hazard Mater 166:455–461

    PubMed  CAS  Google Scholar 

  • Katam K, Bhattacharyya D (2019) Simultaneous treatment of domestic wastewater and bio-lipid synthesis using immobilized and suspended cultures of microalgae and activated sludge. J Ind Eng Chem 69:295–303

    CAS  Google Scholar 

  • Khan F, Lee J-W, Pham DTN, Lee J-H, Kim H-W, Kim Y-K, Kim Y-M (2019) Streptomycin mediated biofilm inhibition and suppression of virulence properties in Pseudomonas aeruginosa PAO1. Appl Microbiol Biotechnol 1–18

  • Kiser MA, Ryu H, Jang H, Hristovski K, Westerhoff P (2010) Biosorption of nanoparticles to heterotrophic wastewater biomass. Water Res 44:4105–4114

    PubMed  CAS  Google Scholar 

  • Konate A, Wang Y, He X, Adeel M, Zhang P, Ma Y, Ding Y, Zhang J, Yang J, Kizito S (2018) Comparative effects of nano and bulk-Fe3O4 on the growth of cucumber (Cucumis sativus). Ecotoxicol Environ Saf 165:547–554

    PubMed  CAS  Google Scholar 

  • Kumari B, Singh D (2016) A review on multifaceted application of nanoparticles in the field of bioremediation of petroleum hydrocarbons. Ecol Eng 97:98–105

    Google Scholar 

  • Li Y-G, Gao H-S, Li W-L, Xing J-M, Liu H-Z (2009) In situ magnetic separation and immobilization of dibenzothiophene-desulfurizing bacteria. Bioresour Technol 100(21):5092–5096

    PubMed  CAS  Google Scholar 

  • Liu Y, Feng H, Fu R, Zhang N, Du W, Shen Q, Zhang R (2019a) Induced root-secreted d-galactose functions as a chemoattractant and enhances the biofilm formation of Bacillus velezensis SQR9 in an McpA-dependent manner. Appl Microbiol Biotechnol 1–13

  • Liu Y, Wang W, Shah SB, Zanaroli G, Xu P, Tang H (2019b) Phenol biodegradation by Acinetobacter radioresistens APH1 and its application in soil bioremediation. Appl Microbiol Biotechnol 1–11

  • Mahmoudi M, Simchi A, Milani A, Stroeve P (2009) Cell toxicity of superparamagnetic iron oxide nanoparticles. J colloid Interface Sci 336(2):510–518

    PubMed  CAS  Google Scholar 

  • Mahmoudi M, Shokrgozar MA, Sardari S, Moghadam MK, Vali H, Laurent S, Stroeve P (2011) Irreversible changes in protein conformation due to interaction with superparamagnetic iron oxide nanoparticles. Nanoscale 3(3):1127–1138

    PubMed  CAS  Google Scholar 

  • Mailoud OM, Elsayed AH, Abo-Elazm A, Fetouh H (2018) Synthesis and study the structure, optical, thermal and dielectric properties of promising glycine copper nitrate (GCN) single crystals. Results Phys 10:512–520

    Google Scholar 

  • Meng L, Bao M, Sun P (2018) Construction of long-chain alkane degrading bacteria and its application in bioremediation of crude oil pollution. Int J Biol Macromol 119:524–532

    PubMed  CAS  Google Scholar 

  • Pardeshi S, Patil A (2008) A simple route for photocatalytic degradation of phenol in aqueous zinc oxide suspension using solar energy. Sol Energy 82:700–705

    CAS  Google Scholar 

  • Polak J, Lu BC-Y (1973) Mutual solubilities of hydrocarbons and water at 0 and 25 °C. Can J Chem 51:4018–4023

    CAS  Google Scholar 

  • Poulopoulos S, Voutsas E, Grigoropoulou H, Philippopoulos C (2005) Stripping as a pretreatment process of industrial oily wastewater. J Hazard Mater 117:135–139

    PubMed  CAS  Google Scholar 

  • Qiao N, Gao M, Zhang X, Du Y, Fan X, Wang L, Liu N, Yu D (2019) Trichosporon fermentans biomass flocculation from soybean oil refinery wastewater using bioflocculant produced from Paecilomyces sp. M2-1. Appl Microbiol Biotechnol 103:2821–2831

    PubMed  CAS  Google Scholar 

  • Raee MJ, Ebrahiminezhad A, Ghoshoon MB, Gholami A, Ghasemi Y (2019) Synthesis and characterization of L-lysin coated iron oxide nanoparticles as appropriate choices for cell immobilization and magnetic separation. Nanosci Nanotechnol-Asia 9:462–466

    CAS  Google Scholar 

  • Ranmadugala D, Ebrahiminezhad A, Manley-Harris M, Ghasemi Y, Berenjian A (2018) Magnetic immobilization of bacteria using iron oxide nanoparticles. Biotechnol Lett 40:237–248

    PubMed  CAS  Google Scholar 

  • Rathnayake D, Sathasivan A, Kastl G, Krishna KB (2019) Hydrogen sulphide control in sewers by catalysing the reaction with oxygen. Sci Total Environ 689:1192–1200

    PubMed  CAS  Google Scholar 

  • Reddy LH, Arias JL, Nicolas J, Couvreur P (2012) Magnetic nanoparticles: design and characterization, toxicity and biocompatibility, pharmaceutical and biomedical applications. Chem Rev 112:5818–5878

    PubMed  CAS  Google Scholar 

  • Sallam S, El-Subruiti G, Eltaweil A (2018) Facile synthesis of Ag-γ-Fe2O3 superior nanocomposite for catalytic reduction of nitroaromatic compounds and catalytic degradation of methyl orange. Catal Lett 148:3701–3714

    CAS  Google Scholar 

  • Samanta B, Yan H, Fischer NO, Shi J, Jerry DJ, Rotello VM (2008) Protein-passivated Fe3O4 nanoparticles: low toxicity and rapid heating for thermal therapy. J Mater Chem 18(11):1204–1208

    PubMed  PubMed Central  CAS  Google Scholar 

  • Sarafzadeh P, Hezave AZ, Ravanbakhsh M, Niazi A, Ayatollahi S (2013) Enterobacter cloacae as biosurfactant producing bacterium: differentiating its effects on interfacial tension and wettability alteration mechanisms for oil recovery during MEOR process. Colloids Surf B Biointerfaces 105:223–229

    PubMed  CAS  Google Scholar 

  • Sathishkumar M, Binupriya AR, Baik SH, Yun SE (2008) Biodegradation of crude oil by individual bacterial strains and a mixed bacterial consortium isolated from hydrocarbon contaminated areas. Clean-Soil Air Water 36:92–96

    CAS  Google Scholar 

  • Schwaminger SP, García PF, Merck GK, Bodensteiner FA, Heissler S, Günther S, Berensmeier S (2015) Nature of interactions of amino acids with bare magnetite nanoparticles. J Phys Chem C 119:23032–23041

    CAS  Google Scholar 

  • Shan G, Xing J, Zhang H, Liu H (2005) Biodesulfurization of dibenzothiophene by microbial cells coated with magnetite nanoparticles. Appl Environ Microbiol 71(8):4497–4502

    PubMed  PubMed Central  CAS  Google Scholar 

  • Shin M, Nguyen T, Ramsay J (2002) Evaluation of support materials for the surface immobilization and decoloration of amaranth by Trametes versicolor. Appl Microbiol Biotechnol 60:218–223

    PubMed  CAS  Google Scholar 

  • Soares-Castro P, Yadav TC, Viggor S, Kivisaar M, Kapley A, Santos PM (2019) Seasonal bacterial community dynamics in a crude oil refinery wastewater treatment plant. Appl Microbiol Biotechnol 103:9131–9141

    PubMed  CAS  Google Scholar 

  • Stoll U, Gupta H (1997) Management strategies for oil and grease residues. Waste Manage Res 15:23–32

    CAS  Google Scholar 

  • Sulistyaningsih T, Santosa SJ, Siswanta D, Rusdiarso B (2017) Synthesis and characterization of magnetites obtained from mechanically and sonochemically assissted co-precipitation and reverse co-precipitation methods. Int J Mater Mech Manuf 5:16–19

    CAS  Google Scholar 

  • Sze K, Lu Y, Wong P (1997) Removal and recovery of copper ion (Cu2+) from electroplating effluent by a bioreactor containing magnetite-immobilized cells of Pseudomonas putida 5X. Stud Environ Sci 66:131–149

    CAS  Google Scholar 

  • Tanudjaja HJ, Hejase CA, Tarabara VV, Fane AG, Chew JW (2019) Membrane-based separation for oily wastewater: a practical perspective. Water Res 156:347–365

    PubMed  CAS  Google Scholar 

  • Viota J, Arroyo F, Delgado A, Horno J (2010) Electrokinetic characterization of magnetite nanoparticles functionalized with amino acids. J Colloid Interface Sci 344:144–149

    PubMed  CAS  Google Scholar 

  • Wang Z, Fingas M (1995) Differentiation of the source of spilled oil and monitoring of the oil weathering process using gas chromatography-mass spectrometry. J Chromatogr 712:321–343

    CAS  Google Scholar 

  • Wang Y-D, Li X-L, Liu Z-X, Zhang X-X, Hu J, Lü J-H (2017) Discrimination of foodborne pathogenic bacteria using synchrotron FTIR microspectroscopy. Nucl Sci Technol 28:49

    Google Scholar 

  • Wu C, He H, Gao H, Liu G, Ma R, An Y, Shi L (2010) Synthesis of Fe3O4@ SiO2@ polymer nanoparticles for controlled drug release. Sci China Chem 53:514–518

    CAS  Google Scholar 

  • Wu X, He H, Yang WL, Yu J, Yang C (2018) Efficient removal of atrazine from aqueous solutions using magnetic Saccharomyces cerevisiae bionanomaterial. Appl Microbiol Biotechnol 102:7597–7610

    PubMed  CAS  Google Scholar 

  • Xia M, Fu D, Chakraborty R, Singh RP, Terry N (2019) Enhanced crude oil depletion by constructed bacterial consortium comprising bioemulsifier producer and petroleum hydrocarbon degraders. Bioresour Technol 282:456–463

    PubMed  CAS  Google Scholar 

  • Xu X, Zhu X (2004) Treatment of refectory oily wastewater by electro-coagulation process. Chemosphere 56:889–894

    PubMed  CAS  Google Scholar 

  • Xu P, Yu B, Li FL, Cai XF, Ma CQ (2006) Microbial degradation of sulfur, nitrogen and oxygen heterocycles. Trends Microbiol 14:398–405

    PubMed  CAS  Google Scholar 

  • Xu P, Zeng GM, Huang DL, Feng CL, Hu S, Zhao MH, Lai C, Wei Z, Huang C, Xie GX (2012) Use of iron oxide nanomaterials in wastewater treatment: a review. Sci Total Environ 424:1–10

    PubMed  CAS  Google Scholar 

  • Yu L, Han M, He F (2017) A review of treating oily wastewater. Arabian J Chem 10:S1913–S1922

    CAS  Google Scholar 

  • Yu L, Yang Y, Yang B, Li Z, Zhang X, Hou Y, Lei L, Zhang D (2018) Effects of solids retention time on the performance and microbial community structures in membrane bioreactors treating synthetic oil refinery wastewater. Chem Eng J 344:462–468

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ebtesam El Bestawy or Abdelazeem Saad Eltaweil.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest. This article does not contain any studies with animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bestawy, E.E., El-Shatby, B.F. & Eltaweil, A.S. Integration between bacterial consortium and magnetite (Fe3O4) nanoparticles for the treatment of oily industrial wastewater. World J Microbiol Biotechnol 36, 141 (2020). https://doi.org/10.1007/s11274-020-02915-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11274-020-02915-1

Keywords

Navigation