Skip to main content
Erschienen in: Wireless Networks 6/2012

01.08.2012

The fundamental limits of broadcasting in dense wireless mobile networks

verfasst von: Giovanni Resta, Paolo Santi

Erschienen in: Wireless Networks | Ausgabe 6/2012

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this paper, we investigate the fundamental properties of broadcasting in mobile wireless networks. In particular, we characterize broadcast capacity and latency of a mobile network, subject to the condition that the stationary node spatial distribution generated by the mobility model is uniform. We first study the intrinsic properties of broadcasting, and present the RippleCast broadcasting scheme that simultaneously achieves asymptotically optimal broadcast capacity and latency, subject to a weak upper bound on maximum node velocity and under the assumption of static broadcast source. We then extend RippleCast with the novel notion of center-casting, and prove that asymptotically optimal broadcast capacity and latency can be achieved also when the broadcast source is mobile. This study intendedly ignores the burden related to the selection of broadcast relay nodes within the mobile network, and shows that optimal broadcasting in mobile networks is, in principle, possible. We then investigate the broadcasting problem when the relay selection burden is taken into account, and present a combined distributed leader election and broadcasting scheme achieving a broadcast capacity and latency which is within a \(\Uptheta((\log n)^{1+\frac{2}{\alpha}})\) factor from optimal, where n is the number of mobile nodes and α > 2 is the path loss exponent. However, this result holds only under the assumption that the upper bound on node velocity converges to zero (although with a very slow, poly-logarithmic rate) as n grows to infinity.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Fußnoten
1
This is true unless the destination is the vicinity of the sender, which occurs with vanishingly probability in a sufficiently large network with randomly selected source/destination pairs.
 
2
This strategy has become the fundamental communication paradigm in delay tolerant networks [4].
 
3
A formal definition of sparse and dense mobile networks will be given in Sect. 3.
 
4
To simplify notation, in the following we assume that the product of the transmitter and receiver antenna gain is 1.
 
5
Given the probabilistic characterization of mobile node positions assumed in this paper, most of the properties proved in this paper hold with high probability (w.h.p.), i.e., with probability at least \(1-\frac{1}{n}\).
 
6
The actual rule used to selected leaders in case more than one nodes are present in a mini-cell is irrelevant.
 
7
Different non-source nodes are allowed to have different velocity, as long as a common upper bound on node velocity is not impaired.
 
8
For the sake of simplicity, we use the intuitive notion of “closed curve” when referring to a ripple, although the ripple is not a curve in standard geometric sense.
 
Literatur
1.
Zurück zum Zitat Brar, G., Blough, D., & Santi, P. (2008). The SCREAM approach for efficient distributed scheduling with physical interference in wireless mesh networks. In Proceedings of IEEE ICDCS, pp. 214–224. Brar, G., Blough, D., & Santi, P. (2008). The SCREAM approach for efficient distributed scheduling with physical interference in wireless mesh networks. In Proceedings of IEEE ICDCS, pp. 214–224.
2.
Zurück zum Zitat Chen, Y., & Welch, J. L. (2005). Location-based broadcasting for dense mobile ad hoc networks. In Proceedings of ACM MSWiM, pp. 63–70. Chen, Y., & Welch, J. L. (2005). Location-based broadcasting for dense mobile ad hoc networks. In Proceedings of ACM MSWiM, pp. 63–70.
3.
Zurück zum Zitat Ellis, R. B., Martin, J. L., & Yan, C. (2007). Random geometric graph diameter in the unit ball. Algorithmica, 47(4), 421–438.MathSciNetMATHCrossRef Ellis, R. B., Martin, J. L., & Yan, C. (2007). Random geometric graph diameter in the unit ball. Algorithmica, 47(4), 421–438.MathSciNetMATHCrossRef
4.
Zurück zum Zitat Fall, K. (2003). A Delay-Tolerant network architecture for challenged internets. In Proceedings of ACM SIGCOMM, pp. 27–34. Fall, K. (2003). A Delay-Tolerant network architecture for challenged internets. In Proceedings of ACM SIGCOMM, pp. 27–34.
6.
Zurück zum Zitat Grossglauser, M., & Tse, D. N. C. (2001). Mobility increases the capacity of ad-hoc wireless networks. In Proceedings of IEEE Infocom, pp. 1360–1369. Grossglauser, M., & Tse, D. N. C. (2001). Mobility increases the capacity of ad-hoc wireless networks. In Proceedings of IEEE Infocom, pp. 1360–1369.
7.
Zurück zum Zitat Gupta, P., & Kumar, P. R. (2000). The capacity of wireless networks. IEEE Transactions on Information Theory, 46(2), 388–404.MathSciNetMATHCrossRef Gupta, P., & Kumar, P. R. (2000). The capacity of wireless networks. IEEE Transactions on Information Theory, 46(2), 388–404.MathSciNetMATHCrossRef
8.
Zurück zum Zitat Jacquet, P., Mans, B., & Rodolakis, G. (2009). Information propagation speed in mobile and delay tolerant networks. In Proceedings of IEEE Infocom, pp. 244–252. Jacquet, P., Mans, B., & Rodolakis, G. (2009). Information propagation speed in mobile and delay tolerant networks. In Proceedings of IEEE Infocom, pp. 244–252.
9.
Zurück zum Zitat Keshavarz-Haddad, A., & Riedi, R. (2007). On the broadcast capacity of multihop wireless networks: Interplay of power, density and interference. In Proceedings of IEEE SECON, pp. 314–323. Keshavarz-Haddad, A., & Riedi, R. (2007). On the broadcast capacity of multihop wireless networks: Interplay of power, density and interference. In Proceedings of IEEE SECON, pp. 314–323.
10.
Zurück zum Zitat Kolchin, V. F., Sevast’yanov, B. A., & Chistyakov, V. P. (1978). Random allocations. Washington, DC: V.H. Winston and Sons. Kolchin, V. F., Sevast’yanov, B. A., & Chistyakov, V. P. (1978). Random allocations. Washington, DC: V.H. Winston and Sons.
11.
Zurück zum Zitat Kong, Z., & Yeh, E. (2008). On the latency of information dissemination in mobile wireless networks. In Proceedings of ACM MobiHoc, pp. 139–148. Kong, Z., & Yeh, E. (2008). On the latency of information dissemination in mobile wireless networks. In Proceedings of ACM MobiHoc, pp. 139–148.
12.
Zurück zum Zitat Kuhn, F., Wattenhofer, R., & Zollinger, A. (2008). Ad hoc networks beyond unit disk graphs. Wireless Networks, 114(5), 715–729.CrossRef Kuhn, F., Wattenhofer, R., & Zollinger, A. (2008). Ad hoc networks beyond unit disk graphs. Wireless Networks, 114(5), 715–729.CrossRef
13.
Zurück zum Zitat LeBoudec, J.-Y., & Vojnovic, M. (2005). Perfect simulation and stationarity of a class of mobility models. In Proceedings of IEEE Infocom, pp. 2743–2754. LeBoudec, J.-Y., & Vojnovic, M. (2005). Perfect simulation and stationarity of a class of mobility models. In Proceedings of IEEE Infocom, pp. 2743–2754.
14.
Zurück zum Zitat Li, X. Y., Tang, S .J., & Frieder, O. (2007). Multicast capacity for large scale wireless ad hoc networks. In Proceedings of ACM Mobicom, pp. 266–277. Li, X. Y., Tang, S .J., & Frieder, O. (2007). Multicast capacity for large scale wireless ad hoc networks. In Proceedings of ACM Mobicom, pp. 266–277.
15.
Zurück zum Zitat Liu, B., Towsley, D., & Swami, A. (2008). Data gathering capacity of large scale multihop wireless networks. In Proceedings of IEEE MASS, pp. 124–132. Liu, B., Towsley, D., & Swami, A. (2008). Data gathering capacity of large scale multihop wireless networks. In Proceedings of IEEE MASS, pp. 124–132.
16.
Zurück zum Zitat Marco, D., Duarte-Melo, E. J., Liu, M., & Neuhoff, D. L. (2003). On the many-to-one transport capacity of a dense wireless sensor network and the compressibility of Its data. In Proceedings of the IPSN, LNCS 2634, 1–16. Marco, D., Duarte-Melo, E. J., Liu, M., & Neuhoff, D. L. (2003). On the many-to-one transport capacity of a dense wireless sensor network and the compressibility of Its data. In Proceedings of the IPSN, LNCS 2634, 1–16.
17.
Zurück zum Zitat Nakano, K., & Olariu, S. (2002). A survey on leader election protocols for radio networks. In Proceedings of ISPAN, pp. 71–77. Nakano, K., & Olariu, S. (2002). A survey on leader election protocols for radio networks. In Proceedings of ISPAN, pp. 71–77.
18.
Zurück zum Zitat Neely, M. J., & Modiano, E. (2005). Capacity and delay tradeoffs for ad hoc mobile networks. IEEE Transactions Information Theory, 51(6), 1917–1937.MathSciNetCrossRef Neely, M. J., & Modiano, E. (2005). Capacity and delay tradeoffs for ad hoc mobile networks. IEEE Transactions Information Theory, 51(6), 1917–1937.MathSciNetCrossRef
19.
Zurück zum Zitat Ni, S., Tseng, Y., Chen, Y., & Sheu, J. (1999). The broadcast storm problem in a mobile ad hoc network. In Proceedings of ACM Mobicom, pp. 151–162. Ni, S., Tseng, Y., Chen, Y., & Sheu, J. (1999). The broadcast storm problem in a mobile ad hoc network. In Proceedings of ACM Mobicom, pp. 151–162.
20.
Zurück zum Zitat Ozgur, A., Leveque, O., & Tse, D. (2007). Hierarchical cooperation achieves linear capacity scaling in ad hoc networks. In Proceedings of IEEE Infocom, pp. 382–390. Ozgur, A., Leveque, O., & Tse, D. (2007). Hierarchical cooperation achieves linear capacity scaling in ad hoc networks. In Proceedings of IEEE Infocom, pp. 382–390.
21.
Zurück zum Zitat Pleisch, S., Balakrishnan, M., Birman, K., & van Renesse, R. (2006). MISTRAL: Efficient flooding in mobile ad-hoc networks. In Proceedings of ACM MobiHoc, pp. 1–12. Pleisch, S., Balakrishnan, M., Birman, K., & van Renesse, R. (2006). MISTRAL: Efficient flooding in mobile ad-hoc networks. In Proceedings of ACM MobiHoc, pp. 1–12.
22.
Zurück zum Zitat Resta, G., & Santi, P. (2009). Latency and capacity optimal broadcasting in wireless multi-Hop networks. In Proceedings of IEEE ICC. Resta, G., & Santi, P. (2009). Latency and capacity optimal broadcasting in wireless multi-Hop networks. In Proceedings of IEEE ICC.
23.
Zurück zum Zitat Resta, G., & Santi, P. (2011). Latency and capacity optimal broadcasting in wireless multi-hop networks with arbitrary number of sources. IEEE Transaction on Information Theory, 57(12), 7746–7758.MathSciNetCrossRef Resta, G., & Santi, P. (2011). Latency and capacity optimal broadcasting in wireless multi-hop networks with arbitrary number of sources. IEEE Transaction on Information Theory, 57(12), 7746–7758.MathSciNetCrossRef
24.
Zurück zum Zitat Scheideler, C., Richa, A., & Santi, P. (2008). An O(log n) dominating set protocol for wireless ad hoc networks under the physical interference model. In Proceedings of ACM MobiHoc, pp. 91–100. Scheideler, C., Richa, A., & Santi, P. (2008). An O(log n) dominating set protocol for wireless ad hoc networks under the physical interference model. In Proceedings of ACM MobiHoc, pp. 91–100.
25.
Zurück zum Zitat Shakkottai, S., Liu, X., & Srikant, R. (2007). The multicast capacity of large multihop wireless networks. In Proceedings of ACM MobiHoc, pp. 247–255. Shakkottai, S., Liu, X., & Srikant, R. (2007). The multicast capacity of large multihop wireless networks. In Proceedings of ACM MobiHoc, pp. 247–255.
26.
Zurück zum Zitat Sharma, G., Mazumdar, R., & Shroff, N. (2006). Delay and capacity trade-offs in mobile ad hoc networks: A global perspective. In Proceedings of IEEE Infocom, pp. 1–12. Sharma, G., Mazumdar, R., & Shroff, N. (2006). Delay and capacity trade-offs in mobile ad hoc networks: A global perspective. In Proceedings of IEEE Infocom, pp. 1–12.
27.
Zurück zum Zitat Wu, Y., & Li, Y. (2008). Construction algorithms for k-connected m-dominating sets in wireless sensor networks. In Proceedings of ACM Mobihoc, pp. 83–90. Wu, Y., & Li, Y. (2008). Construction algorithms for k-connected m-dominating sets in wireless sensor networks. In Proceedings of ACM Mobihoc, pp. 83–90.
28.
Zurück zum Zitat Zheng, R. (2006). Information dissemination in power-constrained wireless networks. In Proceedings of IEEE Infocom, pp. 1–10. Zheng, R. (2006). Information dissemination in power-constrained wireless networks. In Proceedings of IEEE Infocom, pp. 1–10.
Metadaten
Titel
The fundamental limits of broadcasting in dense wireless mobile networks
verfasst von
Giovanni Resta
Paolo Santi
Publikationsdatum
01.08.2012
Verlag
Springer US
Erschienen in
Wireless Networks / Ausgabe 6/2012
Print ISSN: 1022-0038
Elektronische ISSN: 1572-8196
DOI
https://doi.org/10.1007/s11276-012-0427-2

Weitere Artikel der Ausgabe 6/2012

Wireless Networks 6/2012 Zur Ausgabe

Neuer Inhalt