Skip to main content
Erschienen in: Wireless Networks 1/2013

01.01.2013

Power allocation policies with full and partial inter-system channel state information for cognitive radio networks

verfasst von: Kyuho Son, Bang Chul Jung, Song Chong, Dan Keun Sung

Erschienen in: Wireless Networks | Ausgabe 1/2013

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This paper investigates several power allocation policies in orthogonal frequency division multiplexing -based cognitive radio networks under the different availability of inter-system channel state information (CSI) and the different capability of licensed primary users (PUs). Specifically, we deal with two types of PUs having different capabilities: a dumb (peak interference-power tolerable) PU and a more sophisticated (average interference-power tolerable) PU. For such PU models, we first formulate two optimization problems that maximize the capacity of unlicensed secondary user (SU) while maintaining the quality of service of PU under the assumption that both intra- and inter-system CSI are fully available. However, due to loose cooperation between SU and PU, it may be difficult or even infeasible for SU to obtain the full inter-system CSI. Thus, under the partial inter-system CSI setting, we also formulate another two optimization problems by introducing interference-power outage constraints. We propose optimal and efficient suboptimal power allocation policies for these four problems. Extensive numerical results demonstrate that the spectral efficiency achieved by SU with partial inter-system CSI is less than half of what is achieved with full inter-system CSI within a reasonable range of outage probability (e.g., less than 10 %). Further, it is shown that the average interference-power tolerable PU can help to increase the saturated spectral efficiency of SU by about 20 and 50 % in both cases of full and partial inter-system CSI, respectively.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Fußnoten
1
Kang et al. [31] have derived similar results for the case of full inter-system CSI. However, our research has been produced totally independent from them, and moreover, our previous conference paper [1] was presented more than one year earlier.
 
2
There was a follow-up research [36], where the authors have developed a heuristic algorithm to improve the complexity (i.e., running time) of our algorithms in [2] by removing the loop of binary search at the cost of slight loss in performance.
 
3
It should be noted that some works in literature [20, 31, 32] obtain the similar forms of solutions in different problem settings. The terminology capped water-filling comes from the analogy of pouring water into a vessel with both a bumpy ground and a maximum cap.
 
Literatur
1.
Zurück zum Zitat Son, K., Jung, B. C., Chong, S., & Sung, D. K. (2009). Opportunistic underlay transmission multi-carrier cognitive radio systems. In Proceedings of IEEE WCNC (pp. 1–6). Son, K., Jung, B. C., Chong, S., & Sung, D. K. (2009). Opportunistic underlay transmission multi-carrier cognitive radio systems. In Proceedings of IEEE WCNC (pp. 1–6).
2.
Zurück zum Zitat Son, K, Jung, B. C., Chong, S., & Sung, D. K. (2010). Power allocation for OFDM-based cognitive radio systems under outage constraints. In Proceedings of IEEE ICC (pp. 1–5). Son, K, Jung, B. C., Chong, S., & Sung, D. K. (2010). Power allocation for OFDM-based cognitive radio systems under outage constraints. In Proceedings of IEEE ICC (pp. 1–5).
4.
Zurück zum Zitat Haykin, S. (2005). Cognitive radio: brain-empowered wireless communications. IEEE Journal on Selected Areas in Communications, 23(2), 1986–1992.CrossRef Haykin, S. (2005). Cognitive radio: brain-empowered wireless communications. IEEE Journal on Selected Areas in Communications, 23(2), 1986–1992.CrossRef
5.
Zurück zum Zitat IEEE 802.22 Working group, "IEEE P802.22/D0.1 Draft Standard for Wireless Regional Area Networks Part 22: Cognitive Wireless RAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications: Policies and Procedures for Operation in the TV Bands", IEEE docs: 22-06-0067-00-0000_P802-22_D0.1, May 2006. IEEE 802.22 Working group, "IEEE P802.22/D0.1 Draft Standard for Wireless Regional Area Networks Part 22: Cognitive Wireless RAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications: Policies and Procedures for Operation in the TV Bands", IEEE docs: 22-06-0067-00-0000_P802-22_D0.1, May 2006.
6.
Zurück zum Zitat Hu, W., Willkomm, D., Vlantis, G., Gerla, M., & Wolisz, A. (2007). Dynamic frequency hopping communities for efficient IEEE 802.22 operation. IEEE Communications Magazine, 45(5), 80–87.CrossRef Hu, W., Willkomm, D., Vlantis, G., Gerla, M., & Wolisz, A. (2007). Dynamic frequency hopping communities for efficient IEEE 802.22 operation. IEEE Communications Magazine, 45(5), 80–87.CrossRef
7.
Zurück zum Zitat Mitola, J. (2000). Cognitive radio: An integrated agent architecture for software defined radio. Ph.D. Thesis, KTH Royal Institute of Technology. Mitola, J. (2000). Cognitive radio: An integrated agent architecture for software defined radio. Ph.D. Thesis, KTH Royal Institute of Technology.
8.
Zurück zum Zitat Srinivasa, S., & Jafar, S. A. (2007). The throughput potential of cognitive radio: A theoretical perspective. IEEE Communications Magazine, 45(5), 73–79.CrossRef Srinivasa, S., & Jafar, S. A. (2007). The throughput potential of cognitive radio: A theoretical perspective. IEEE Communications Magazine, 45(5), 73–79.CrossRef
9.
Zurück zum Zitat Chen, R., Park, J. M., Hou, Y. T., & Reed, J. H. (2008). Toward secure distributed spectrum sensing in cognitive radio networks. IEEE Communications Magazine, 46(4), 50–55.CrossRef Chen, R., Park, J. M., Hou, Y. T., & Reed, J. H. (2008). Toward secure distributed spectrum sensing in cognitive radio networks. IEEE Communications Magazine, 46(4), 50–55.CrossRef
10.
Zurück zum Zitat Ycek, T., & Arslan, H. (2009). A survey of spectrum sensing algorithms for cognitive radio applications. IEEE Communications Surveys & Tutorials, 11(1), 116–160.CrossRef Ycek, T., & Arslan, H. (2009). A survey of spectrum sensing algorithms for cognitive radio applications. IEEE Communications Surveys & Tutorials, 11(1), 116–160.CrossRef
11.
Zurück zum Zitat Etkin, R., Parekh, A., & Tse, D. (2007). Spectrum-sharing for unlicensed bands. IEEE Journal on Selected Areas in Communications, 25(3), 517–528.CrossRef Etkin, R., Parekh, A., & Tse, D. (2007). Spectrum-sharing for unlicensed bands. IEEE Journal on Selected Areas in Communications, 25(3), 517–528.CrossRef
12.
Zurück zum Zitat Niyato, D., & Hossain, E. (2008). Competitive spectrum sharing in cognitive radio networks: a dynamic game approach. IEEE Transactions on Wireless Communications, 7(7), 2651–2660.CrossRef Niyato, D., & Hossain, E. (2008). Competitive spectrum sharing in cognitive radio networks: a dynamic game approach. IEEE Transactions on Wireless Communications, 7(7), 2651–2660.CrossRef
13.
Zurück zum Zitat Devroye, N., Mitran, P., & Tarokh, V. (2006). Achievable rates in cognitive radio channels. IEEE Transactions on Information Theory, 52(5), 1813–1827.MathSciNetCrossRef Devroye, N., Mitran, P., & Tarokh, V. (2006). Achievable rates in cognitive radio channels. IEEE Transactions on Information Theory, 52(5), 1813–1827.MathSciNetCrossRef
14.
Zurück zum Zitat Ghasemi, A., & Sousa, E. S. (2007). Fundamental limits of spectrum-sharing in fading environments. IEEE Transactions on Wireless Communications, 6(2), 649–658.CrossRef Ghasemi, A., & Sousa, E. S. (2007). Fundamental limits of spectrum-sharing in fading environments. IEEE Transactions on Wireless Communications, 6(2), 649–658.CrossRef
15.
Zurück zum Zitat Chu, F., & Chen, K. (2007). Radio resource allocation in OFDMA cognitive radio systems. In Proceedings of IEEE PIMRC (pp. 1–5). Chu, F., & Chen, K. (2007). Radio resource allocation in OFDMA cognitive radio systems. In Proceedings of IEEE PIMRC (pp. 1–5).
16.
Zurück zum Zitat Almalfouh, S. M., & Stuber, G. L. (2010). Uplink resource allocation in cognitive radio networks with imperfect spectrum sensing. In Proceedings of VTC Fall (pp. 1–6). Almalfouh, S. M., & Stuber, G. L. (2010). Uplink resource allocation in cognitive radio networks with imperfect spectrum sensing. In Proceedings of VTC Fall (pp. 1–6).
17.
Zurück zum Zitat Wysocki, T., & Jamalipour, A. (2010). Mean variance based qos management in cognitive radio. IEEE Transactions on Wireless Communications, 9(10), 3281–3289.CrossRef Wysocki, T., & Jamalipour, A. (2010). Mean variance based qos management in cognitive radio. IEEE Transactions on Wireless Communications, 9(10), 3281–3289.CrossRef
18.
Zurück zum Zitat Bansal, G., Hossain, M., & Bhargava, V. (2008). Optimal and suboptimal power allocation schemes for ofdm-based cognitive radio systems. IEEE Transactions on Wireless Communications, 7(11), 4710–4718.CrossRef Bansal, G., Hossain, M., & Bhargava, V. (2008). Optimal and suboptimal power allocation schemes for ofdm-based cognitive radio systems. IEEE Transactions on Wireless Communications, 7(11), 4710–4718.CrossRef
19.
Zurück zum Zitat Cheng, P., Zhang, Z., Chen, H. H., & Qiu, P. (2008). Optimal distributed joint frequency, rate and power allocation in cognitive OFDMA systems. IET Communications, 2(6), 815–826.CrossRef Cheng, P., Zhang, Z., Chen, H. H., & Qiu, P. (2008). Optimal distributed joint frequency, rate and power allocation in cognitive OFDMA systems. IET Communications, 2(6), 815–826.CrossRef
20.
Zurück zum Zitat Zhang, L., Liang, Y. C., & Xin, Y. (2008). Joint beamforming and power allocation for multiple access channels in cognitive radio networks. IEEE Journal on Selected Areas in Communications, 26(1), 38–51.MATHCrossRef Zhang, L., Liang, Y. C., & Xin, Y. (2008). Joint beamforming and power allocation for multiple access channels in cognitive radio networks. IEEE Journal on Selected Areas in Communications, 26(1), 38–51.MATHCrossRef
21.
Zurück zum Zitat Yao, Y., & Giannakis, G. B. (2005). Rate-maximizing power allocation in ofdm based on partial channel knowledge. IEEE Transactions on Wireless Communications, 4(3), 1073–1083.CrossRef Yao, Y., & Giannakis, G. B. (2005). Rate-maximizing power allocation in ofdm based on partial channel knowledge. IEEE Transactions on Wireless Communications, 4(3), 1073–1083.CrossRef
22.
Zurück zum Zitat Leke, A., & Cioffi, J. M. (1998). Impact of imperfect channel knowledge on the performance of multicarrier systems. In Proceedings of IEEE GLOBECOM (pp. 951–955). Leke, A., & Cioffi, J. M. (1998). Impact of imperfect channel knowledge on the performance of multicarrier systems. In Proceedings of IEEE GLOBECOM (pp. 951–955).
23.
Zurück zum Zitat Zhang, L., Liang, Y. C., & Xin, Y. (2009). Robust cognitive beamforming with partial channel state information. IEEE Transactions on Wireless Communications, 8(8), 4143–4153.CrossRef Zhang, L., Liang, Y. C., & Xin, Y. (2009). Robust cognitive beamforming with partial channel state information. IEEE Transactions on Wireless Communications, 8(8), 4143–4153.CrossRef
24.
Zurück zum Zitat Huang, D., Miao, C., & Leung, C. (2010). Resource allocation in mu-ofdm cognitive radio systems with partial channel state information. EURASIP Journal of Wireless Communications. doi:10.1155/2010/189157. Huang, D., Miao, C., & Leung, C. (2010). Resource allocation in mu-ofdm cognitive radio systems with partial channel state information. EURASIP Journal of Wireless Communications. doi:10.​1155/​2010/​189157.
25.
Zurück zum Zitat Musavian, L., & Aissa, S. (2009). Fundamental capacity limits of cognitive radio in fading environments with imperfect channel information. IEEE Transactions on Wireless Communications, 57(11), 3472–3480. Musavian, L., & Aissa, S. (2009). Fundamental capacity limits of cognitive radio in fading environments with imperfect channel information. IEEE Transactions on Wireless Communications, 57(11), 3472–3480.
26.
Zurück zum Zitat Sun, J., & Zhu, H. (2009). Channel capacity analysis of spectrum-sharing with imperfect channel sensing. In Proceedings of CHINACOM (pp. 8–11). Sun, J., & Zhu, H. (2009). Channel capacity analysis of spectrum-sharing with imperfect channel sensing. In Proceedings of CHINACOM (pp. 8–11).
27.
Zurück zum Zitat IEEE 802.16e-2005, Part 16: Air Interface for Fixed and Mobile Broadband Wireless Access Systems Amendment for Physical and Medium Access Control Layers for Combined Fixed and Mobile Operation in Licensed Bands, December 2006. IEEE 802.16e-2005, Part 16: Air Interface for Fixed and Mobile Broadband Wireless Access Systems Amendment for Physical and Medium Access Control Layers for Combined Fixed and Mobile Operation in Licensed Bands, December 2006.
28.
Zurück zum Zitat Fazel, K., & Kaiser, S. (2003). Multi-carrier and spread spectrum systems. Chichester: Wiley.CrossRef Fazel, K., & Kaiser, S. (2003). Multi-carrier and spread spectrum systems. Chichester: Wiley.CrossRef
29.
Zurück zum Zitat Starr, T., Cioffi, J., & Silverman, P. (1999). Understanding digital subscriber line technology. Englewood Cliffs, NJ: Prentice-Hall. Starr, T., Cioffi, J., & Silverman, P. (1999). Understanding digital subscriber line technology. Englewood Cliffs, NJ: Prentice-Hall.
30.
Zurück zum Zitat Boyd, S., & Vandenberghe, L. (2004). Convex optimization. Cambridge : Cambridge University Press.MATH Boyd, S., & Vandenberghe, L. (2004). Convex optimization. Cambridge : Cambridge University Press.MATH
31.
Zurück zum Zitat Kang, X., Garg, H. K., Liang, Y.-C., & Zhang, R. S. (2010). Optimal power allocation for OFDM-based cognitive radio with new primary transmission protection criteria. IEEE IEEE Transactions on Wireless Communications, 9(6), 2066–2075.CrossRef Kang, X., Garg, H. K., Liang, Y.-C., & Zhang, R. S. (2010). Optimal power allocation for OFDM-based cognitive radio with new primary transmission protection criteria. IEEE IEEE Transactions on Wireless Communications, 9(6), 2066–2075.CrossRef
32.
Zurück zum Zitat Papandreou, N., & Antonakopoulos, T. (2008). Bit and power allocation in constrained multicarrier systems: The single-user case. EURASIP J. Adv. Signal Process (pp. 1–14). doi:10.1155/2008/643081. Papandreou, N., & Antonakopoulos, T. (2008). Bit and power allocation in constrained multicarrier systems: The single-user case. EURASIP J. Adv. Signal Process (pp. 1–14). doi:10.​1155/​2008/​643081.
33.
Zurück zum Zitat Palomar, D., & Fonollosa, J. R., (2005). Practical algorithms for a family of waterfilling solutions. IEEE Transactions on Signal Processing, 53(2), 686–695.MathSciNetCrossRef Palomar, D., & Fonollosa, J. R., (2005). Practical algorithms for a family of waterfilling solutions. IEEE Transactions on Signal Processing, 53(2), 686–695.MathSciNetCrossRef
34.
Zurück zum Zitat Tse, D., & Viswanath, P. (2005). Fundamentals of wireless communication. New York: Cambridge University Press.MATHCrossRef Tse, D., & Viswanath, P. (2005). Fundamentals of wireless communication. New York: Cambridge University Press.MATHCrossRef
35.
Zurück zum Zitat Gnedenko, B. V., & Kolmogorov, A. N. (1968). Limit distributions for sums of independent random variables. Reading, MA: Addison-Wesley. Gnedenko, B. V., & Kolmogorov, A. N. (1968). Limit distributions for sums of independent random variables. Reading, MA: Addison-Wesley.
36.
Zurück zum Zitat Zhou, X., Wu, B., Ho, P., & Ling, X. (2011). An efficient power allocation algorithm for OFDM based underlay cognitive radio networks. In Proceedings of Globecom (pp. 1–5). Zhou, X., Wu, B., Ho, P., & Ling, X. (2011). An efficient power allocation algorithm for OFDM based underlay cognitive radio networks. In Proceedings of Globecom (pp. 1–5).
Metadaten
Titel
Power allocation policies with full and partial inter-system channel state information for cognitive radio networks
verfasst von
Kyuho Son
Bang Chul Jung
Song Chong
Dan Keun Sung
Publikationsdatum
01.01.2013
Verlag
Springer US
Erschienen in
Wireless Networks / Ausgabe 1/2013
Print ISSN: 1022-0038
Elektronische ISSN: 1572-8196
DOI
https://doi.org/10.1007/s11276-012-0453-0

Weitere Artikel der Ausgabe 1/2013

Wireless Networks 1/2013 Zur Ausgabe

Neuer Inhalt