Skip to main content
Erschienen in: Wireless Networks 3/2013

01.04.2013

Adaptive proportional fairness resource allocation for OFDM-based cognitive radio networks

verfasst von: Shaowei Wang, Fangjiang Huang, Chonggang Wang

Erschienen in: Wireless Networks | Ausgabe 3/2013

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this paper, we study the resource allocation problem in multiuser Orthogonal Frequency Division Multiplexing (OFDM)-based cognitive radio networks. The interference introduced to Primary Users (PUs) is fully considered, as well as a set of proportional rate constraints to ensure fairness among Secondary Users (SUs). Since it is extremely computationally complex to obtain the optimal solution because of integer constraints, we adopt a two-step method to address the formulated problem. Firstly, a heuristic subchannel assignment is developed based on the normalized capacity of each OFDM subchannel by jointly considering channel gain and the interference to PUs, which approaches a rough proportional fairness and removes the intractable integer constraints. Secondly, for a given subchannel assignment, we derive a fast optimal power distribution algorithm that has a complexity of O(L 2 N) by exploiting the problem’s structure, which is much lower than standard convex optimization techniques that generally have a complexity of O((N + K)3), where NL and K are the number of subchannels, PUs and SUs, respectively. We also develop a simple power distribution algorithm with complexity of only O(L + N), while achieving above 90 % sum capacity of the upper bound. Experiments show that our proposed algorithms work quite well in practical wireless scenarios. A significant capacity gain is obtained and the proportional fairness is satisfied perfectly.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Fußnoten
1
It consumes too much time to work out the solutions for the commercial software to get the upper bound, so we only consider a small scale of users.
 
Literatur
1.
Zurück zum Zitat Federal Communications Commission. (2003). Facilitating opportunities for flexible, efficient, and reliable spectrum use employing cognitive radio technologies. FCC Report, ET Docket 03-322. Federal Communications Commission. (2003). Facilitating opportunities for flexible, efficient, and reliable spectrum use employing cognitive radio technologies. FCC Report, ET Docket 03-322.
2.
Zurück zum Zitat Mitola, J., & Maguire, G. (1999). Cognitive radio: Making software radios more personal. IEEE Personal Communications, 6(4), 13–18.CrossRef Mitola, J., & Maguire, G. (1999). Cognitive radio: Making software radios more personal. IEEE Personal Communications, 6(4), 13–18.CrossRef
3.
Zurück zum Zitat Marinho, J., & Monteiro, E. (2012). Cognitive radio: Survey on communication protocols, spectrum decision issues, and future research directions. Wireless Networks, 18(2), 147–164.CrossRef Marinho, J., & Monteiro, E. (2012). Cognitive radio: Survey on communication protocols, spectrum decision issues, and future research directions. Wireless Networks, 18(2), 147–164.CrossRef
4.
Zurück zum Zitat Federal Communications Commission. (2003). Spectrum policy task force report. FCC Report, ET Docket 02-135. Federal Communications Commission. (2003). Spectrum policy task force report. FCC Report, ET Docket 02-135.
5.
Zurück zum Zitat Weiss , T., & Jondral, F. (2004). Spectrum pooling: An innovative strategy for the enhancement of spectrum efficiency. IEEE Communications Magazine, 42(3), 8–14.CrossRef Weiss , T., & Jondral, F. (2004). Spectrum pooling: An innovative strategy for the enhancement of spectrum efficiency. IEEE Communications Magazine, 42(3), 8–14.CrossRef
6.
Zurück zum Zitat Wong, C., Cheng, R., Lataief, K., & Murch, R. (1999) Multiuser OFDM with adaptive subcarrier, bit, and power allocation. IEEE Journal on Selected Areas in Communications, 17(10), 1747–1758.CrossRef Wong, C., Cheng, R., Lataief, K., & Murch, R. (1999) Multiuser OFDM with adaptive subcarrier, bit, and power allocation. IEEE Journal on Selected Areas in Communications, 17(10), 1747–1758.CrossRef
7.
Zurück zum Zitat Suh, C., & Mo, J. (2008). Resource allocation for multicast services in multi-carrier wireless communications. IEEE Transactions on Wireless Communications, 7(1), 27–31.CrossRef Suh, C., & Mo, J. (2008). Resource allocation for multicast services in multi-carrier wireless communications. IEEE Transactions on Wireless Communications, 7(1), 27–31.CrossRef
8.
Zurück zum Zitat Tao, M., Liang, Y.-C., & Zhang, F. (2008). Resource allocation for delay differentiated traffic in multiuser OFDM systems. IEEE Transactions on Wireless Communications, 7(6), 2190–2201.CrossRef Tao, M., Liang, Y.-C., & Zhang, F. (2008). Resource allocation for delay differentiated traffic in multiuser OFDM systems. IEEE Transactions on Wireless Communications, 7(6), 2190–2201.CrossRef
9.
Zurück zum Zitat Ho, W. L., & Liang, Y.-C. (2009). Optimal resource allocation for multiuser MIMO-OFDM systems with user rate constraints. IEEE Transactions on Vehicular Technology, 58(3), 1190–1203.CrossRef Ho, W. L., & Liang, Y.-C. (2009). Optimal resource allocation for multiuser MIMO-OFDM systems with user rate constraints. IEEE Transactions on Vehicular Technology, 58(3), 1190–1203.CrossRef
10.
Zurück zum Zitat Shen, Z., Andrews, J., & Evans, B. (2005). Adaptive resource allocation in multiuser OFDM systems with proportional rate constraints. IEEE Transactions on Wireless Communications, 4(6), 2726–2737.CrossRef Shen, Z., Andrews, J., & Evans, B. (2005). Adaptive resource allocation in multiuser OFDM systems with proportional rate constraints. IEEE Transactions on Wireless Communications, 4(6), 2726–2737.CrossRef
11.
Zurück zum Zitat Sadr, S., Anpalagan, A., & Raahemifar, K. (2009). Radio resource allocation algorithms for the downlink of multiuser OFDM communication systems. IEEE Communications Surveys & Tutorials, 11(3), 92–106.CrossRef Sadr, S., Anpalagan, A., & Raahemifar, K. (2009). Radio resource allocation algorithms for the downlink of multiuser OFDM communication systems. IEEE Communications Surveys & Tutorials, 11(3), 92–106.CrossRef
12.
Zurück zum Zitat Bansal, G., Hossain, M., & Bhargava, V. (2008). Optimal and suboptimal power allocation schemes for OFDM-based cognitive radio systems. IEEE Transactions on Wireless Communications, 7(11), 4710–4718.CrossRef Bansal, G., Hossain, M., & Bhargava, V. (2008). Optimal and suboptimal power allocation schemes for OFDM-based cognitive radio systems. IEEE Transactions on Wireless Communications, 7(11), 4710–4718.CrossRef
13.
Zurück zum Zitat Zhang, Y., & Leung, C. (2009). Resource allocation in an OFDM-based cognitive radio system. IEEE Transactions on Communications, 57(7), 1928–1931.CrossRef Zhang, Y., & Leung, C. (2009). Resource allocation in an OFDM-based cognitive radio system. IEEE Transactions on Communications, 57(7), 1928–1931.CrossRef
14.
Zurück zum Zitat Wang, S. (2010). Efficient resource allocation algorithm for cognitive OFDM systems. IEEE Communications Letters, 14(8), 725–727.CrossRef Wang, S. (2010). Efficient resource allocation algorithm for cognitive OFDM systems. IEEE Communications Letters, 14(8), 725–727.CrossRef
15.
Zurück zum Zitat Wang, S., Huang, F., & Zhou, Z.-H. (2011). Fast power allocation algorithm for cognitive radio networks. IEEE Communications Letters, 15(8), 845–847.CrossRef Wang, S., Huang, F., & Zhou, Z.-H. (2011). Fast power allocation algorithm for cognitive radio networks. IEEE Communications Letters, 15(8), 845–847.CrossRef
16.
Zurück zum Zitat Gu, H., Wang, S., & Li, B. (2011) Maximize sum capacity of multiuser cognitive OFDM systems. In Proceedings of the 20th annual wireless and optical communications conference, pp. 1–5. Gu, H., Wang, S., & Li, B. (2011) Maximize sum capacity of multiuser cognitive OFDM systems. In Proceedings of the 20th annual wireless and optical communications conference, pp. 1–5.
17.
Zurück zum Zitat Zhang, Y., & Leung, C. (2009). Resource allocation for non-real-time services in OFDM-based cognitive radio systems. IEEE Communications Letters, 13(1), 16–18.CrossRef Zhang, Y., & Leung, C. (2009). Resource allocation for non-real-time services in OFDM-based cognitive radio systems. IEEE Communications Letters, 13(1), 16–18.CrossRef
18.
Zurück zum Zitat Attar, A., Nakhai, M., & Aghvami, A. (2009). Cognitive radio game for secondary spectrum access problem. IEEE Transactions on Wireless Communications, 8(4), 2121–2131.CrossRef Attar, A., Nakhai, M., & Aghvami, A. (2009). Cognitive radio game for secondary spectrum access problem. IEEE Transactions on Wireless Communications, 8(4), 2121–2131.CrossRef
19.
Zurück zum Zitat Almalfouh, S. M., & Stuber, G. L. (2011) Interference-aware radio resource allocation in OFDMA-based cognitive radio networks. IEEE Transactions on Vehicular Technology, 60(4), 1699–1713.CrossRef Almalfouh, S. M., & Stuber, G. L. (2011) Interference-aware radio resource allocation in OFDMA-based cognitive radio networks. IEEE Transactions on Vehicular Technology, 60(4), 1699–1713.CrossRef
20.
Zurück zum Zitat Mitran, P., Le, L., & Rosenberg, C. (2010). Queue-aware resource allocation for downlink OFDMA cognitive radio networks. IEEE Transactions on Wireless Communications, 9(10), 3100–3111.CrossRef Mitran, P., Le, L., & Rosenberg, C. (2010). Queue-aware resource allocation for downlink OFDMA cognitive radio networks. IEEE Transactions on Wireless Communications, 9(10), 3100–3111.CrossRef
21.
Zurück zum Zitat Ge, M., & Wang, S. (2012). Fast optimal resource allocation is possible for multiuser OFDM-based cognitive radio networks with heterogeneous services. IEEE Transaction on Wireless Communication, 11(4), 1500–1509.CrossRef Ge, M., & Wang, S. (2012). Fast optimal resource allocation is possible for multiuser OFDM-based cognitive radio networks with heterogeneous services. IEEE Transaction on Wireless Communication, 11(4), 1500–1509.CrossRef
22.
Zurück zum Zitat Wang, S., Huang, F., Yuan, M., & Du, S. (2012). Resource allocation for multiuser cognitive OFDM networks with proportional rate constraints. International Journal of Communication Systems, 25(2), 254–269.CrossRef Wang, S., Huang, F., Yuan, M., & Du, S. (2012). Resource allocation for multiuser cognitive OFDM networks with proportional rate constraints. International Journal of Communication Systems, 25(2), 254–269.CrossRef
23.
Zurück zum Zitat Attar, A., Holland, O., Nakhai, M., & Aghvami, A. (2008). Interference-limited resource allocation for cognitive radio in orthogonal frequency-division multiplexing networks. IET Communications, 2(6), 806–814.CrossRef Attar, A., Holland, O., Nakhai, M., & Aghvami, A. (2008). Interference-limited resource allocation for cognitive radio in orthogonal frequency-division multiplexing networks. IET Communications, 2(6), 806–814.CrossRef
24.
Zurück zum Zitat Boyd, S., & Vandenberghe, L. (2004). Convex optimization. Cambridge University Press, New York.MATH Boyd, S., & Vandenberghe, L. (2004). Convex optimization. Cambridge University Press, New York.MATH
25.
Zurück zum Zitat Nocedal, J., & Wright, S. (2006). Numerical optimization (2nd edn.). Berlin: Springer. Nocedal, J., & Wright, S. (2006). Numerical optimization (2nd edn.). Berlin: Springer.
26.
Zurück zum Zitat Bertsekas D. (2006) Convex analysis and optimization. Athena: Athena Scientific Press. Bertsekas D. (2006) Convex analysis and optimization. Athena: Athena Scientific Press.
27.
Zurück zum Zitat Daniels, R. (1974). Approximation methods for electronic filter design New York: McGraw-Hill. Daniels, R. (1974). Approximation methods for electronic filter design New York: McGraw-Hill.
28.
Zurück zum Zitat Goldsmith, A., & Chua, S. (1997). Variable-rate variable-power MQAM for fading channels. IEEE Transactions on Communications, 45(10), 1218–1230.CrossRef Goldsmith, A., & Chua, S. (1997). Variable-rate variable-power MQAM for fading channels. IEEE Transactions on Communications, 45(10), 1218–1230.CrossRef
Metadaten
Titel
Adaptive proportional fairness resource allocation for OFDM-based cognitive radio networks
verfasst von
Shaowei Wang
Fangjiang Huang
Chonggang Wang
Publikationsdatum
01.04.2013
Verlag
Springer US
Erschienen in
Wireless Networks / Ausgabe 3/2013
Print ISSN: 1022-0038
Elektronische ISSN: 1572-8196
DOI
https://doi.org/10.1007/s11276-012-0465-9

Weitere Artikel der Ausgabe 3/2013

Wireless Networks 3/2013 Zur Ausgabe

Neuer Inhalt