Skip to main content
Erschienen in: Wireless Networks 2/2014

01.02.2014

Enhanced algorithms for deploying the minimum sensors to construct a wireless sensor network having full coverage of critical square grids

verfasst von: Bing-Hong Liu, Kuo-Wen Su

Erschienen in: Wireless Networks | Ausgabe 2/2014

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

With the rapid technological development of sensors, many applications have been designed to use wireless sensor networks to monitor a certain area and provide quality-of-service guarantees. Therefore, the coverage problem had an important issue for constructing wireless sensor networks. Recently, a coverage problem of constructing a minimum size wireless sensor network to fully cover critical squares in a sensor field, termed CRITICAL-SQUARE-GRID COVERAGE, has received much attention. CRITICAL-SQUARE-GRID COVERAGE is shown to be NP-Complete, and an approximation algorithm, termed Steiner-tree-based critical grid covering algorithm (STBCGCA), is proposed accordingly. In STBCGCA, a sensor is selected to cover critical squares only if at least one of the critical squares is fully covered by the sensor. However, a critical square grid can be cooperatively covered by two or more sensors; that is, one sensor covers one part of the critical square, and the other sensors cover the other part of the critical square. This motivates us to propose two efficient algorithms based on STBCGCA, termed critical-grid-partitioned (CGP-STBCGCA) and reference-point-covered (RPC-STBCGCA), that select sensors that can cooperatively cover critical squares in an attempt to minimize the size of the wireless sensor network. The theoretical analysis shows that sensors deployed by CGP-STBCGCA and RPC-STBCGCA can form a connected wireless sensor network that fully covers all critical grids. In addition, a performance guarantee for CGP-STBCGCA is provided. Simulation results show that the ratio of the average number of deployed sensors in STBCGCA to that in CGP-STBCGCA and RPC-STBCGCA in about 90 % of the cases was between 1.08 and 2.52 for CRITICAL-SQUARE-GRID COVERAGE.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Bai, X., Kumar, S., Yun, Z., Xuan, D., & Lai, T. H. (2006). Deploying wireless sensors to achieve both coverage and connectivity. In Procedings of ACM MobiHoc. Florence, Italy. Bai, X., Kumar, S., Yun, Z., Xuan, D., & Lai, T. H. (2006). Deploying wireless sensors to achieve both coverage and connectivity. In Procedings of ACM MobiHoc. Florence, Italy.
2.
Zurück zum Zitat Cardei, M., & Du, D. Z. (2005). Improving wireless sensor network lifetime through power aware organization. ACM/Springer Journal of Wireless Networks, 11(3), 333–340.CrossRef Cardei, M., & Du, D. Z. (2005). Improving wireless sensor network lifetime through power aware organization. ACM/Springer Journal of Wireless Networks, 11(3), 333–340.CrossRef
3.
Zurück zum Zitat Cardei, M., Thai, M. T., Li, Y., & Wu, W. (2005). Energy-efficient target coverage in wireless sensor networks. In Proceedings of IEEE INFOCOM. Miami, FL. Cardei, M., Thai, M. T., Li, Y., & Wu, W. (2005). Energy-efficient target coverage in wireless sensor networks. In Proceedings of IEEE INFOCOM. Miami, FL.
4.
Zurück zum Zitat Chakrabarty, K., Iyengar, S. S., Qi, H., & Cho, E. (2002). Grid coverage for surveillance and target location in distributed sensor networks. IEEE Transactions on Computers, 51(12), 1448–1453.CrossRefMathSciNet Chakrabarty, K., Iyengar, S. S., Qi, H., & Cho, E. (2002). Grid coverage for surveillance and target location in distributed sensor networks. IEEE Transactions on Computers, 51(12), 1448–1453.CrossRefMathSciNet
5.
Zurück zum Zitat Chang, C. Y., Chang, C. T., Chen, Y. C., & Chang, H. R. (2009). Obstacle-resistant deployment algorithms for wireless sensor networks. IEEE Transactions on Vehicular Technology, 58(6), 2925–2941.CrossRef Chang, C. Y., Chang, C. T., Chen, Y. C., & Chang, H. R. (2009). Obstacle-resistant deployment algorithms for wireless sensor networks. IEEE Transactions on Vehicular Technology, 58(6), 2925–2941.CrossRef
6.
Zurück zum Zitat Chang, X. S., Cheng, W. F., Liao, X. K., & Peng, S. L. (2008). Barrier coverage with mobile sensors. In Proceedings of IEEE ISPAN. Sydney, Australia. Chang, X. S., Cheng, W. F., Liao, X. K., & Peng, S. L. (2008). Barrier coverage with mobile sensors. In Proceedings of IEEE ISPAN. Sydney, Australia.
7.
Zurück zum Zitat Chen, A., Kumar, S., & Lai, T. H. (2010). Local barrier coverage in wireless sensor networks. IEEE Transactions on Mobile Computing, 9(4), 491–504.CrossRef Chen, A., Kumar, S., & Lai, T. H. (2010). Local barrier coverage in wireless sensor networks. IEEE Transactions on Mobile Computing, 9(4), 491–504.CrossRef
8.
Zurück zum Zitat Chen, J., Jiang, A., Kanj, I. A., Xia, G., & Zhang, F. (2007). Separability and topology control of quasi unit disk graphs. In Proceedings of IEEE INFOCOM. Alaska, USA. Chen, J., Jiang, A., Kanj, I. A., Xia, G., & Zhang, F. (2007). Separability and topology control of quasi unit disk graphs. In Proceedings of IEEE INFOCOM. Alaska, USA.
9.
Zurück zum Zitat Chow, C. Y., Mokbel, M. F., & He, T. (2011). A privacy-preserving location monitoring system for wireless sensor networks. IEEE Transactions on Mobile Computing, 10(1), 94–107.CrossRef Chow, C. Y., Mokbel, M. F., & He, T. (2011). A privacy-preserving location monitoring system for wireless sensor networks. IEEE Transactions on Mobile Computing, 10(1), 94–107.CrossRef
10.
11.
Zurück zum Zitat Gallais, A., Carle, J., Simplot-ryl, D., & Stojmenovic, I. (2008). Localized sensor area coverage with low communication overhead. IEEE Transactions on Mobile Computing, 7(5), 661–672.CrossRef Gallais, A., Carle, J., Simplot-ryl, D., & Stojmenovic, I. (2008). Localized sensor area coverage with low communication overhead. IEEE Transactions on Mobile Computing, 7(5), 661–672.CrossRef
12.
Zurück zum Zitat Han, X., Cao, X., Lloyd, E. L., & Shen, C. C. (2008). Deploying directional sensor networks with guaranteed connectivity and coverage. In Proceedings of IEEE SECON. California, USA. Han, X., Cao, X., Lloyd, E. L., & Shen, C. C. (2008). Deploying directional sensor networks with guaranteed connectivity and coverage. In Proceedings of IEEE SECON. California, USA.
13.
Zurück zum Zitat He, J., & Shi, H. (2010). A distributed algorithm for finding maximum barrier coverage in wireless sensor networks. In Proceedings of IEEE GLOBECOM. Florida, USA. He, J., & Shi, H. (2010). A distributed algorithm for finding maximum barrier coverage in wireless sensor networks. In Proceedings of IEEE GLOBECOM. Florida, USA.
14.
Zurück zum Zitat Heo, N., & Varshney, P. K. (2005). Energy-efficient deployment of intelligent mobile sensor networks. IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems and Humans, 35(1):78–92.CrossRef Heo, N., & Varshney, P. K. (2005). Energy-efficient deployment of intelligent mobile sensor networks. IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems and Humans, 35(1):78–92.CrossRef
15.
Zurück zum Zitat Ke, W. C., Liu, B. H., & Tsai, M. J. (2011). The critical-square-grid coverage problem in wireless sensor networks is NP-Complete. Computer Networks, 55(9), 2209–2220.CrossRef Ke, W. C., Liu, B. H., & Tsai, M. J. (2011). The critical-square-grid coverage problem in wireless sensor networks is NP-Complete. Computer Networks, 55(9), 2209–2220.CrossRef
16.
Zurück zum Zitat Ke, W. C., Liu, B. H., & Tsai, M. J. (2011). Efficient algorithm for constructing minimum size wireless sensor networks to fully cover critical square grids. IEEE Transactions on Wireless Communications, 10(4), 1154–1164.CrossRef Ke, W. C., Liu, B. H., & Tsai, M. J. (2011). Efficient algorithm for constructing minimum size wireless sensor networks to fully cover critical square grids. IEEE Transactions on Wireless Communications, 10(4), 1154–1164.CrossRef
17.
Zurück zum Zitat Klein, P. N., & Ravi, R. (1995). A nearly best-possible approximation algorithm for node-weighted steiner trees. Journal of Algorithms, 19(1), 104–115.CrossRefMATHMathSciNet Klein, P. N., & Ravi, R. (1995). A nearly best-possible approximation algorithm for node-weighted steiner trees. Journal of Algorithms, 19(1), 104–115.CrossRefMATHMathSciNet
18.
Zurück zum Zitat Kumar, S., Lai, T. H., Arora, A. (2005). Barrier coverage with wireless sensors. In Proceedings of ACM MobiCom. Cologne, Germany. Kumar, S., Lai, T. H., Arora, A. (2005). Barrier coverage with wireless sensors. In Proceedings of ACM MobiCom. Cologne, Germany.
19.
Zurück zum Zitat Lin, F. Y. S., & Chiu, P. L. (2005). A simulated annealing algorithm for energy-efficient sensor network design. In Proceedings of ICST WiOpt. Trentino, Italy. Lin, F. Y. S., & Chiu, P. L. (2005). A simulated annealing algorithm for energy-efficient sensor network design. In Proceedings of ICST WiOpt. Trentino, Italy.
20.
Zurück zum Zitat Ma, H., Meng, Y., Li, D., Hong, Y., & Chen, W. (2012). Minimum camera barrier coverage in camera wireless sensor networks. In Proceedings of IEEE INFOCOM. Orlando, USA. Ma, H., Meng, Y., Li, D., Hong, Y., & Chen, W. (2012). Minimum camera barrier coverage in camera wireless sensor networks. In Proceedings of IEEE INFOCOM. Orlando, USA.
21.
Zurück zum Zitat Mclachlan, J. S., Hellmann, J. J., & Schwartz, M. W. (2007). A framework for debate of assisted migration in an era of climate change. Conservation Biology, 21(2), 297–302.CrossRef Mclachlan, J. S., Hellmann, J. J., & Schwartz, M. W. (2007). A framework for debate of assisted migration in an era of climate change. Conservation Biology, 21(2), 297–302.CrossRef
22.
Zurück zum Zitat Slijepcevic, S., & Potkonjak, M. (2001). Power efficient organization of wireless sensor networks. In Proceedings of IEEE ICC. Helsinki, Finland. Slijepcevic, S., & Potkonjak, M. (2001). Power efficient organization of wireless sensor networks. In Proceedings of IEEE ICC. Helsinki, Finland.
23.
Zurück zum Zitat Xiong, S., Yu, L., Haiying, S., Chen, W., & Wei, L. (2012). Efficient algorithms for sensor deployment and routing in sensor networks for network-structured environment monitoring. In Proceedings of IEEE INFOCOM. Orlando, USA. Xiong, S., Yu, L., Haiying, S., Chen, W., & Wei, L. (2012). Efficient algorithms for sensor deployment and routing in sensor networks for network-structured environment monitoring. In Proceedings of IEEE INFOCOM. Orlando, USA.
24.
Zurück zum Zitat Yener, B., Magdon-Ismail, M., & Sivrikaya, F. (2007). Joint problem of power optimal connectivity and coverage in wireless sensor networks. ACM/Springer Journal of Wireless Networks, 13(4), 537–550.CrossRef Yener, B., Magdon-Ismail, M., & Sivrikaya, F. (2007). Joint problem of power optimal connectivity and coverage in wireless sensor networks. ACM/Springer Journal of Wireless Networks, 13(4), 537–550.CrossRef
25.
Zurück zum Zitat Zhou, Z., Das, S. R., & Gupta, H. (2009). Variable radii connected sensor cover in sensor networks. ACM Transactions on Sensor Networks, 5(1), 1–36.CrossRef Zhou, Z., Das, S. R., & Gupta, H. (2009). Variable radii connected sensor cover in sensor networks. ACM Transactions on Sensor Networks, 5(1), 1–36.CrossRef
26.
Zurück zum Zitat Zou, Y., & Chakrabarty, K. (2005). A distributed coverage- and connectivity-centric technique for selecting active nodes in wireless sensor networks. IEEE Transactions on Computers, 54(8), 978–991.CrossRef Zou, Y., & Chakrabarty, K. (2005). A distributed coverage- and connectivity-centric technique for selecting active nodes in wireless sensor networks. IEEE Transactions on Computers, 54(8), 978–991.CrossRef
Metadaten
Titel
Enhanced algorithms for deploying the minimum sensors to construct a wireless sensor network having full coverage of critical square grids
verfasst von
Bing-Hong Liu
Kuo-Wen Su
Publikationsdatum
01.02.2014
Verlag
Springer US
Erschienen in
Wireless Networks / Ausgabe 2/2014
Print ISSN: 1022-0038
Elektronische ISSN: 1572-8196
DOI
https://doi.org/10.1007/s11276-013-0662-1

Weitere Artikel der Ausgabe 2/2014

Wireless Networks 2/2014 Zur Ausgabe

Neuer Inhalt