Skip to main content
Erschienen in: Wireless Networks 1/2017

14.12.2015

On throughput capacity of large-scale ad hoc networks with realistic buffer constraint

verfasst von: Yang Xu, Jia Liu, Yulong Shen, Xiangning Li, Xiaohong Jiang

Erschienen in: Wireless Networks | Ausgabe 1/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The problem of determining the throughput capacity of an ad hoc network is addressed. Previous studies mainly focused on the infinite buffer scenario, however, in this paper we consider a large-scale ad hoc network with a scalable traffic model, where each node has a buffer of size B packets, and explore its corresponding per node throughput performance. We first model each node as a G/G/1/B queuing system which incorporates the important wireless interference and medium access contention. With the help of this queuing model, we then explore the properties of the throughput upper bound for all scheduling schemes. Based on these properties, we further develop an analytical approach to derive the expressions of per node throughput capacity for the concerned buffer-limited ad hoc network. The results show that the cumulative effect of packet loss due to the per hop buffer overflowing will degrade the throughput performance, and the degradation is inversely proportional to the buffer size. Finally, we provide the specific scheduling schemes which enable the per node throughput to approach its upper bound, under both symmetrical and unsymmetrical network topologies.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
1
The term of scaling law usually appears together with notations (\(O,\Omega ,\varTheta ,o,\omega\)) [4], and is used to describe the growth rate of the per node throughput as the number of nodes tends to infinity.
 
2
Please kindly notice that the queue discipline has no impact on the per node throughput performance.
 
Literatur
1.
Zurück zum Zitat Perkins, C. E. (2008). Ad hoc networking. Boston: Addison-Wesley Professional. Perkins, C. E. (2008). Ad hoc networking. Boston: Addison-Wesley Professional.
2.
Zurück zum Zitat Ramanathan, R., & Redi, J. (2002). A brief overview of ad hoc networks: Challenges and directions. IEEE Communications Magazine, 40(5), 20–22.CrossRef Ramanathan, R., & Redi, J. (2002). A brief overview of ad hoc networks: Challenges and directions. IEEE Communications Magazine, 40(5), 20–22.CrossRef
3.
Zurück zum Zitat Gupta, P., & Kumar, P. R. (2000). The capacity of wireless networks. IEEE Transactions on Information Theory, 46(2), 388–404.MathSciNetCrossRefMATH Gupta, P., & Kumar, P. R. (2000). The capacity of wireless networks. IEEE Transactions on Information Theory, 46(2), 388–404.MathSciNetCrossRefMATH
4.
Zurück zum Zitat Cormen, T. H., Leiserson, C. E., Rivest, R. L., & Stein, C. (2009). Introduction to algorithms. Cambridge: MIT Press.MATH Cormen, T. H., Leiserson, C. E., Rivest, R. L., & Stein, C. (2009). Introduction to algorithms. Cambridge: MIT Press.MATH
5.
Zurück zum Zitat Li, J., Blake, C., De Couto, D. S., Lee, H. I., & Morris, R. (2001). Capacity of ad hoc wireless networks. In Proceedings of the 7th annual international conference on mobile computing and networking (pp. 61–69). Li, J., Blake, C., De Couto, D. S., Lee, H. I., & Morris, R. (2001). Capacity of ad hoc wireless networks. In Proceedings of the 7th annual international conference on mobile computing and networking (pp. 61–69).
6.
Zurück zum Zitat Grossglauser, M., & Tse, D. N. C. (2002). Mobility increases the capacity of ad hoc wireless networks. IEEE/ACM Transactions on Networking, 10(4), 477–486.CrossRef Grossglauser, M., & Tse, D. N. C. (2002). Mobility increases the capacity of ad hoc wireless networks. IEEE/ACM Transactions on Networking, 10(4), 477–486.CrossRef
7.
Zurück zum Zitat Neely, M. J., & Modiano, E. (2005). Capacity and delay tradeoffs for ad hoc mobile networks. IEEE Transactions on Information Theory, 51(6), 1917–1937.MathSciNetCrossRefMATH Neely, M. J., & Modiano, E. (2005). Capacity and delay tradeoffs for ad hoc mobile networks. IEEE Transactions on Information Theory, 51(6), 1917–1937.MathSciNetCrossRefMATH
8.
Zurück zum Zitat Andrews, J., Shakkottai, S., Heath, R., Jindal, N., Haenggi, M., Berry, R., et al. (2008). Rethinking information theory for mobile ad hoc networks. IEEE Communications Magazine, 46(12), 94–101.CrossRef Andrews, J., Shakkottai, S., Heath, R., Jindal, N., Haenggi, M., Berry, R., et al. (2008). Rethinking information theory for mobile ad hoc networks. IEEE Communications Magazine, 46(12), 94–101.CrossRef
9.
Zurück zum Zitat Goldsmith, A., Effros, M., Koetter, R., Mdard, M., Ozdaglar, A., & Zheng, L. (2011). Beyond shannon: the quest for fundamental performance limits of wireless ad hoc networks. IEEE Communications Magazine, 49(5), 195–205.CrossRef Goldsmith, A., Effros, M., Koetter, R., Mdard, M., Ozdaglar, A., & Zheng, L. (2011). Beyond shannon: the quest for fundamental performance limits of wireless ad hoc networks. IEEE Communications Magazine, 49(5), 195–205.CrossRef
10.
Zurück zum Zitat Zhou, N., Wu, H., & Abouzeid, A. A. (2005). The impact of traffic patterns on the overhead of reactive routing protocols. IEEE Journal on Selected Areas in Communications, 23(3), 547–560.CrossRef Zhou, N., Wu, H., & Abouzeid, A. A. (2005). The impact of traffic patterns on the overhead of reactive routing protocols. IEEE Journal on Selected Areas in Communications, 23(3), 547–560.CrossRef
11.
Zurück zum Zitat Bianchi, G. (2000). Performance analysis of the IEEE 802.11 distributed coordination function. IEEE Journal on Selected Areas in Communications, 18(3), 535–547.CrossRef Bianchi, G. (2000). Performance analysis of the IEEE 802.11 distributed coordination function. IEEE Journal on Selected Areas in Communications, 18(3), 535–547.CrossRef
12.
Zurück zum Zitat Robertazzi, T. G. (2000). Computer networks and systems: Queueing theory and performance evaluation. Berlin: Springer Science & Business Media.CrossRefMATH Robertazzi, T. G. (2000). Computer networks and systems: Queueing theory and performance evaluation. Berlin: Springer Science & Business Media.CrossRefMATH
13.
Zurück zum Zitat Takahashi, A., Takahashi, Y., Kaneda, S., & Shinagawa, N. (2007). Diffusion approximations for the GI/G/c/K queue. In Proceedings of IEEE ICCCN (pp. 681–686). Takahashi, A., Takahashi, Y., Kaneda, S., & Shinagawa, N. (2007). Diffusion approximations for the GI/G/c/K queue. In Proceedings of IEEE ICCCN (pp. 681–686).
14.
Zurück zum Zitat Granas, A., & Dugundji, J. (2003). Fixed point theory. Berlin: Springer Science & Business Media.CrossRefMATH Granas, A., & Dugundji, J. (2003). Fixed point theory. Berlin: Springer Science & Business Media.CrossRefMATH
15.
Zurück zum Zitat Stewart, J. (2011). Calculus. Boston: Cengage Learning.MATH Stewart, J. (2011). Calculus. Boston: Cengage Learning.MATH
16.
Zurück zum Zitat Li, F., & Wang, Y. (2008). Circular sailing routing for wireless networks. In Proceedings of IEEE INFOCOM (pp. 1346–1354). Li, F., & Wang, Y. (2008). Circular sailing routing for wireless networks. In Proceedings of IEEE INFOCOM (pp. 1346–1354).
17.
Zurück zum Zitat Coxeter, H. S. M. (1969). Introduction to geometry. New York: Wiley.MATH Coxeter, H. S. M. (1969). Introduction to geometry. New York: Wiley.MATH
18.
Zurück zum Zitat El Gamal, A., Mammen, J., Prabhakar, B., & Shah, D. (2006). Optimal throughput-delay scaling in wireless networks-part I: The fluid model. IEEE Transactions on Information Theory, 52(6), 2568–2592.MathSciNetCrossRefMATH El Gamal, A., Mammen, J., Prabhakar, B., & Shah, D. (2006). Optimal throughput-delay scaling in wireless networks-part I: The fluid model. IEEE Transactions on Information Theory, 52(6), 2568–2592.MathSciNetCrossRefMATH
19.
Zurück zum Zitat Lin, X., Sharma, G., Mazumdar, R. R., & Shroff, N. B. (2006). Degenerate delay-capacity tradeoffs in ad-hoc networks with brownian mobility. IEEE/ACM Transactions on Networking, 14(SI), 2777–2784.MathSciNetMATH Lin, X., Sharma, G., Mazumdar, R. R., & Shroff, N. B. (2006). Degenerate delay-capacity tradeoffs in ad-hoc networks with brownian mobility. IEEE/ACM Transactions on Networking, 14(SI), 2777–2784.MathSciNetMATH
20.
Zurück zum Zitat Mammen, J., & Shah, D. (2007). Throughput and delay in random wireless networks with restricted mobility. IEEE Transactions on Information Theory, 53(3), 1108–1116.MathSciNetCrossRefMATH Mammen, J., & Shah, D. (2007). Throughput and delay in random wireless networks with restricted mobility. IEEE Transactions on Information Theory, 53(3), 1108–1116.MathSciNetCrossRefMATH
21.
Zurück zum Zitat Sharma, G., Mazumdar, R., & Shroff, N. B. (2007). Delay and capacity trade-offs in mobile ad hoc networks: A global perspective. IEEE/ACM Transactions on Networking, 15(5), 981–992.CrossRef Sharma, G., Mazumdar, R., & Shroff, N. B. (2007). Delay and capacity trade-offs in mobile ad hoc networks: A global perspective. IEEE/ACM Transactions on Networking, 15(5), 981–992.CrossRef
22.
Zurück zum Zitat Ciullo, D., Martina, V., Garetto, M., & Leonardi, E. (2011). Impact of correlated mobility on delay-throughput performance in mobile ad hoc networks. IEEE/ACM Transactions on Networking, 19(6), 1745–1758.CrossRef Ciullo, D., Martina, V., Garetto, M., & Leonardi, E. (2011). Impact of correlated mobility on delay-throughput performance in mobile ad hoc networks. IEEE/ACM Transactions on Networking, 19(6), 1745–1758.CrossRef
23.
Zurück zum Zitat Xie, L. L., & Kumar, P. R. (2004). A network information theory for wireless communication: Scaling laws and optimal operation. IEEE Transactions on Information Theory, 50(5), 748–767.MathSciNetCrossRefMATH Xie, L. L., & Kumar, P. R. (2004). A network information theory for wireless communication: Scaling laws and optimal operation. IEEE Transactions on Information Theory, 50(5), 748–767.MathSciNetCrossRefMATH
24.
Zurück zum Zitat Zhang, G., Xu, Y., Wang, X., & Guizani, M. (2010). Capacity of hybrid wireless networks with directional antenna and delay constraint. IEEE Transactions on Communications, 58(7), 2097–2106.CrossRef Zhang, G., Xu, Y., Wang, X., & Guizani, M. (2010). Capacity of hybrid wireless networks with directional antenna and delay constraint. IEEE Transactions on Communications, 58(7), 2097–2106.CrossRef
25.
Zurück zum Zitat Wang, X., Huang, W., Wang, S., Zhang, J., & Hu, C. (2011). Delay and capacity tradeoff analysis for motioncast. IEEE/ACM Transactions on Networking, 19(5), 1354–1367.CrossRef Wang, X., Huang, W., Wang, S., Zhang, J., & Hu, C. (2011). Delay and capacity tradeoff analysis for motioncast. IEEE/ACM Transactions on Networking, 19(5), 1354–1367.CrossRef
26.
Zurück zum Zitat Huang, W., & Wang, X. (2012). Capacity scaling of general cognitive networks. IEEE/ACM Transactions on Networking, 20(5), 1501–1513.CrossRef Huang, W., & Wang, X. (2012). Capacity scaling of general cognitive networks. IEEE/ACM Transactions on Networking, 20(5), 1501–1513.CrossRef
27.
Zurück zum Zitat Lee, S. H., & Chung, S. Y. (2012). Capacity scaling of wireless ad hoc networks: Shannon meets Maxwell. IEEE Transactions on Information Theory, 58(3), 1702–1715.MathSciNetCrossRef Lee, S. H., & Chung, S. Y. (2012). Capacity scaling of wireless ad hoc networks: Shannon meets Maxwell. IEEE Transactions on Information Theory, 58(3), 1702–1715.MathSciNetCrossRef
28.
Zurück zum Zitat Lu, N., & Shen, X. S. (2014). Scaling laws for throughput capacity and delay in wireless networks: A survey. IEEE Communications Surveys & Tutorials, 16(2), 642–657.CrossRef Lu, N., & Shen, X. S. (2014). Scaling laws for throughput capacity and delay in wireless networks: A survey. IEEE Communications Surveys & Tutorials, 16(2), 642–657.CrossRef
29.
Zurück zum Zitat Toumpis, S., & Goldsmith, A. J. (2003). Capacity regions for wireless ad hoc networks. IEEE Transactions on Wireless Communications, 2(4), 736–748.CrossRef Toumpis, S., & Goldsmith, A. J. (2003). Capacity regions for wireless ad hoc networks. IEEE Transactions on Wireless Communications, 2(4), 736–748.CrossRef
30.
Zurück zum Zitat Urgaonkar, R., & Neely, M. J. (2011). Network capacity region and minimum energy function for a delay-tolerant mobile ad hoc network. IEEE/ACM Transactions on Networking, 19(4), 1137–1150.CrossRef Urgaonkar, R., & Neely, M. J. (2011). Network capacity region and minimum energy function for a delay-tolerant mobile ad hoc network. IEEE/ACM Transactions on Networking, 19(4), 1137–1150.CrossRef
31.
Zurück zum Zitat Law, L. K., Krishnamurthy, S. V., & Faloutsos, M. (2008). Capacity of hybrid cellular-ad hoc data networks. In IEEE INFOCOM (pp. 1346–1354). Law, L. K., Krishnamurthy, S. V., & Faloutsos, M. (2008). Capacity of hybrid cellular-ad hoc data networks. In IEEE INFOCOM (pp. 1346–1354).
32.
Zurück zum Zitat Shila, D. M., & Cheng, Y. (2012). Ad hoc wireless networks meet the infrastructure: Mobility, capacity and delay. In Proceedings of IEEE INFOCOM (pp. 3031–3035). Shila, D. M., & Cheng, Y. (2012). Ad hoc wireless networks meet the infrastructure: Mobility, capacity and delay. In Proceedings of IEEE INFOCOM (pp. 3031–3035).
33.
Zurück zum Zitat Li, P., & Fang, Y. (2012). On the throughput capacity of heterogeneous wireless networks. IEEE Transactions on Mobile Computing, 11(12), 2073–2086.CrossRef Li, P., & Fang, Y. (2012). On the throughput capacity of heterogeneous wireless networks. IEEE Transactions on Mobile Computing, 11(12), 2073–2086.CrossRef
34.
Zurück zum Zitat Herdtner, J. D., & Chong, E. K. (2005). Throughput-storage tradeoff in ad hoc networks. In Proceedings of IEEE INFOCOM (pp. 2536–2542). Herdtner, J. D., & Chong, E. K. (2005). Throughput-storage tradeoff in ad hoc networks. In Proceedings of IEEE INFOCOM (pp. 2536–2542).
35.
Zurück zum Zitat Subramanian, R., Vellambi, B. N., & Fekri, F. (2009). A generalized framework for throughput analysis in sparse mobile networks. In IEEE WiOPT (pp. 1–10). Subramanian, R., Vellambi, B. N., & Fekri, F. (2009). A generalized framework for throughput analysis in sparse mobile networks. In IEEE WiOPT (pp. 1–10).
36.
Zurück zum Zitat Subramanian, R., & Fekri, F. (2009). Analysis of multiple-unicast throughput in finite-buffer delay-tolerant networks. In IEEE ISIT (pp. 1634–1638). Subramanian, R., & Fekri, F. (2009). Analysis of multiple-unicast throughput in finite-buffer delay-tolerant networks. In IEEE ISIT (pp. 1634–1638).
38.
Zurück zum Zitat Liu, J., Sheng, M., Xu, Y., Li, J., & Jiang, X. (2015). End-to-end delay modeling in buffer-limited MANETs: A general theoretical framework. IEEE Transactions on Wireless Communications. doi:10.1109/TWC.2015.2475258. Liu, J., Sheng, M., Xu, Y., Li, J., & Jiang, X. (2015). End-to-end delay modeling in buffer-limited MANETs: A general theoretical framework. IEEE Transactions on Wireless Communications. doi:10.​1109/​TWC.​2015.​2475258.
Metadaten
Titel
On throughput capacity of large-scale ad hoc networks with realistic buffer constraint
verfasst von
Yang Xu
Jia Liu
Yulong Shen
Xiangning Li
Xiaohong Jiang
Publikationsdatum
14.12.2015
Verlag
Springer US
Erschienen in
Wireless Networks / Ausgabe 1/2017
Print ISSN: 1022-0038
Elektronische ISSN: 1572-8196
DOI
https://doi.org/10.1007/s11276-015-1146-2

Weitere Artikel der Ausgabe 1/2017

Wireless Networks 1/2017 Zur Ausgabe

Neuer Inhalt