Skip to main content
Log in

Collision analysis of CSMA/CA based MAC protocol for duty cycled WBANs

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

Collision problem is critical for the performance of coexisting Wireless Body Area Networks (WBANs). This paper presents a collision analysis of CSMA/CA based MAC protocol in the view of collision probability under duty cycled superframe structure. Firstly, we discuss two types of chief collisions at a micro level (i.e., staggered collisions and direct collisions) in the presence of hidden and exposed terminals, respectively. Then we discuss various direct collisions between RTS/CTS frames in slotted CSMA/CA. Furthermore, we highlight a special type of direct collisions which can neither be detected by interfering nodes nor discovered before the collisions of DATAs (i.e., indiscoverable collisions). A hypothesis, several propositions and conclusions are presented to explain which is the domination of the collisions and how the direct collisions are released. Numerical results verify our conclusions and confirm that the indiscoverable collisions turn out to be another key issue in coexisting WBANs. The simulation in mobile environment with time-varying traffic is carried out to show the impact of collisions on network performance. To the best of our knowledge, this paper is the most comprehensive collision analysis at the micro level for the evolution of CSMA/CA based MAC protocol and the first estimation of indiscoverable collisions in duty cycled WBANs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Movassaghi, S., Abolhasan, M., Lipman, J., Smith, D., & Jamalipour, A. (2014). Wireless body area networks: A survey. IEEE on Communications Surveys and Tutorials, 16(3), 1658–1686.

    Article  Google Scholar 

  2. Cavallari, R., Martelli, F., Rosini, R., Buratti, C., & Verdone, R. (2014). A survey on wireless body area networks: Technologies and design challenges. IEEE on Communications Surveys and Tutorials, 16(3), 1635–1657.

    Article  Google Scholar 

  3. Latr, B., Braem, B., Moerman, I., Blondia, C., & Demeester, P. (2011). A survey on wireless body area networks. Wireless Networks, 17(1), 1–18.

    Article  Google Scholar 

  4. Ben Hamida, E., Alam, M. M., Maman, M., Denis, B., & D’Errico, R. (2014). Wearable body-to-body networks for critical and rescue operations The CROW 2 project. In Personal, Indoor, and Mobile Radio Communication (PIMRC), 2014 IEEE 25th Annual International Symposium on (pp. 2145–2149). IEEE.

  5. Dong, J., & Smith, D. (2013). Coexistence and interference mitigation for wireless body area networks: Improvements using on-body opportunistic relaying. arXiv preprint arXiv:1305.6992.

  6. Alam, M. M., & Hamida, E. B. (2015). Interference mitigation and coexistence strategies in IEEE 802.15. 6 based wearable body-to-body networks. In 10th CROWNCOM conference.

  7. Alam, M. M., & Ben Hamida, E. (2014). Towards accurate mobility and radio link modeling for IEEE 802.15. 6 wearable body sensor networks. In Wireless and mobile computing, networking and communications (WiMob), 2014 IEEE 10th international conference on (pp. 298–305). IEEE.

  8. Alam, M. M., & Hamida, E. B. (2014). Surveying wearable human assistive technology for life and safety critical applications: Standards, challenges and opportunities. Sensors, 14(5), 9153–9209.

    Article  Google Scholar 

  9. Rasouli, H., Kavian, Y. S., & Rashvand, H. F. (2014). ADCA: Adaptive duty cycle algorithm for energy efficient IEEE 802.15. 4 Beacon-enabled wireless sensor networks. IEEE on Sensors Journal, 14(11), 3893–3902.

    Article  Google Scholar 

  10. Moungla, H., Jarray, A., Karmouch, A., & Mehaoua, A. (2014). Cost-effective reliability-and energy-based intra-WBAN interference mitigation. In Global Communications Conference (GLOBECOM), 2014 IEEE (pp. 2399–2404). IEEE.

  11. IEEE Standard part 15.4: Wireless MAC and PHY specifications for low rate WPAN, IEEE Std 802.15.4, IEEE, New York, NY, USA (2003).

  12. IEEE standard for local and metropolitan area networks part 15.6: Wireless body area networks, IEEE Std 802.15.6-2012, pp. 1–271. (2012).

  13. Ji, X., He, Y., Wang, J., Dong, W., Wu, X., & Liu, Y. (2014). Walking down the STAIRS: Efficient collision resolution for wireless sensor networks. In INFOCOM, 2014 Proceedings IEEE (pp. 961–969). IEEE.

  14. Jang, H. S., Kim, S. M., Ko, K. S., Cha, J., & Sung, D. K. (2014). Spatial group based random access for M2M communications. ieee on communications letters, 18(6), 961–964.

    Article  Google Scholar 

  15. Khan, P., Ullah, N., Ullah, S., & Kwak, K. S. (2014). Analytical modeling of IEEE 802.15. 6 CSMA/CA protocol under different access periods. In Communications and Information Technologies (ISCIT), 2014 14th International Symposium on (pp. 151–155). IEEE.

  16. Rashwand, S., & Mii, J. (2011). Performance evaluation of IEEE 802.15. 6 under non-saturation condition. In Global telecommunications conference (GLOBECOM 2011), 2011 IEEE (pp. 1–6). IEEE.

  17. Hiep, P. T., & Hoang, N. H. (2014). Maximizing throughput of cluster-based WBAN with IEEE 802.15. 6 CSMA/CA. International Journal of Multimedia and Ubiquitous Engineering, 9(5), 391–402.

    Article  MathSciNet  Google Scholar 

  18. Zheng, J., Li, J., Liu, Q., Shi, H., & Yang, X. (2013). Performance analysis of three multi-radio access control policies in heterogeneous wireless networks. Science China Information Sciences, 56(12), 1–10.

    Article  Google Scholar 

  19. Alam, M. M., & Hamida, E. B. (2015). strategies for optimal mac parameters tuning in ieee 802.15. 6 wearable wireless sensor networks. Journal of Medical Systems, 39(9), 1–16.

    Article  Google Scholar 

  20. Collotta, M., Gentile, L., Pau, G., & Scata, G. (2014). Flexible IEEE 802.15. 4 deadline-aware scheduling for DPCSs using priority-based CSMA-CA. Computers in Industry, 65(8), 1181–1192.

    Article  Google Scholar 

  21. Pudasaini, S., Shin, S., & Kim, K. (2012). Carrier sense multiple access with improvised collision avoidance and short-term fairness. Wireless Networks, 18(8), 915–927.

    Article  Google Scholar 

  22. Rasheed, M. B., Javaid, N., Haider, A., Qasim, U., Khan, Z. A., & Alghamdi, T. A. (2014). An energy consumption analysis of Beacon enabled slotted CSMA/CA IEEE 802.15. 4. In Advanced information networking and applications workshops (WAINA), 2014 28th International Conference on (pp. 372–377). IEEE.

  23. Rashwand, S., & Mii, J. (2012). Effects of access phases lengths on performance of IEEE 802.15. 6 CSMA/CA. Computer Networks, 56(12), 2832–2846.

    Article  Google Scholar 

  24. Alam, M. M., Berder, O., Menard, D., & Sentieys, O. (2012). TAD-MAC: Traffic-aware dynamic mac protocol for wireless body area sensor networks. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 2(1), 109–119.

    Article  Google Scholar 

  25. Li, Z., Chen, M., & Zhang, G. (2015). Variable-rate transmission method with coordinator election for wireless body area networks. Wireless Networks, 21(7), 2169–2180.

    Google Scholar 

  26. Ullah, S., & Kwak, K. S. (2011) Throughput and delay limits of IEEE 802.15. 6. In Wireless communications and networking conference (WCNC), 2011 IEEE (pp. 174–178). IEEE.

  27. Li, C., Li, H. B., & Kohno, R. (2009). Performance evaluation of IEEE 802.15. 4 for wireless body area network (WBAN). In Communications workshops, 2009. ICC Workshops 2009. IEEE International conference on (pp. 1–5). IEEE.

  28. Ilhan, H. (2012). Performance Analysis of two-way AF relaying systems over cascaded Nakagami–Fading channels. IEEE on Signal Processing Letters, 19(6), 332–335.

    Article  Google Scholar 

  29. Martelli, F., Buratti, C., & Verdone, R. (2011). On the performance of an IEEE 802.15. 6 wireless body area network. In Wireless conference 2011—Sustainable wireless technologies (European Wireless), 2011 11th European (pp. 1–6). VDE.

  30. Ahmed, I., Peng, M., Wang, W., & Shah, S. I. (2009). Performance analysis of a random ARQ initialized cooperative communication protocol in shadowed Nakagami-m wireless channel. Science in China Series F: Information Sciences, 52(6), 1027–1036.

    Article  MATH  Google Scholar 

  31. Jang, B., & Sichitiu, M. L. (2012). IEEE 802.11 saturation throughput analysis in the presence of hidden terminals. IEEE/ACM Transactions on Networking (TON), 20(2), 557–570.

    Article  Google Scholar 

  32. Mouzehkesh, N., Zia, T., Shafigh, S., & Zheng, L. (2015). Dynamic backoff scheduling of low data rate applications in wireless body area networks. Wireless Networks, 21(8), 2571–2592.

  33. Alam, M. M., Berder, O., Menard, D., Anger, T., & Sentieys, O. (2011). A hybrid model for accurate energy analysis of WSN nodes. EURASIP Journal on Embedded Systems, 2011, 4.

    Article  Google Scholar 

  34. Timmons, N. F., & Scanlon, W. G. (2004). Analysis of the performance of IEEE 802.15. 4 for medical sensor body area networking. In Sensor and Ad hoc communications and networks, 2004. IEEE SECON 2004. 2004 First annual IEEE communications society conference on (pp. 16–24). IEEE.

  35. Chowdhury, M. S., Ashrafuzzaman, K., & Kwak, K. S. (2014). Saturation throughput analysis of IEEE 802.15. 6 Slotted Aloha in heterogeneous conditions. IEEE on Wireless Communications Letters, 3(3), 257–260.

    Article  Google Scholar 

  36. Sarkar, S., Misra, S., Chakraborty, C., & Obaidat, M. S. (2014). Analysis of reliability and throughput under saturation condition of IEEE 802.15. 6 CSMA/CA for wireless body area networks. In Global Communications Conference (GLOBECOM), 2014 IEEE (pp. 2405–2410). IEEE.

  37. Rashw, S., Mii, J., & Khazaei, H. (2011). Performance analysis of IEEE 802.15. 6 under saturation condition and error-prone channel. In Wireless communications and networking conference (WCNC), 2011 IEEE (pp. 1167–1172). IEEE.

  38. Bianchi, G. (1998). IEEE 802.11-saturation throughput analysis. IEEE on Communications Letters, 2(12), 318–320.

    Article  Google Scholar 

  39. Bianchi, G. (2000). Performance analysis of the IEEE 802.11 distributed coordination function. IEEE Journal on Selected Areas in Communications, 18(3), 535–547.

    Article  Google Scholar 

  40. Krishnan, M. N., Pollin, S., & Zakhor, A. (2009). Local estimation of probabilities of direct and staggered collisions in 802.11 WLANs. In Global telecommunications conference, 2009. GLOBECOM 2009. IEEE (pp. 1–8). IEEE.

  41. Christine, M., Krishnan, M. N., Ng, S., Haghani, E., & Zakhor, A. (2011). Local estimation of collision probabilities in 802.11 wlans: An experimental study. In Wireless communications and networking conference (WCNC), 2011 IEEE (pp. 43–48). IEEE.

  42. Liu, Y., Sheahan, R., & Schwefel, H. P. (2006). Towards analytic modeling for CSMA/CA based MAC protocol in wireless multi-hop networks—A simulation study. In Measuring, modelling and evaluation of computer and communication systems (MMB), 2006 13th GI/ITG conference (pp. 1–16). VDE.

Download references

Acknowledgments

This research was supported by major Program of National Natural Science Foundation of China (No. 61190114).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongmei Sun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, Z., Sun, Y. & Ji, Y. Collision analysis of CSMA/CA based MAC protocol for duty cycled WBANs. Wireless Netw 23, 1429–1447 (2017). https://doi.org/10.1007/s11276-016-1230-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-016-1230-2

Keywords

Navigation