Skip to main content
Erschienen in: Wireless Networks 3/2018

01.09.2016

Energy efficient dispatch strategy for the dual-functional mobile sink in wireless rechargeable sensor networks

verfasst von: Xian Li, Qiuling Tang, Changyin Sun

Erschienen in: Wireless Networks | Ausgabe 3/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Scavenging energy from radio-frequency (RF) signals has drawn significant attention in recent years. By introducing the technology of RF energy harvesting into wireless sensor networks, a new type of network named mobile data gathering based wireless rechargeable sensor network (MGWRSN) is considered in this paper. In the MGWRSN, a dual-functional mobile sink (MS) which has the abilities of data collecting and RF energy generating is employed. Data sensed by sensor nodes is gathered at several selected head nodes (HNs). Through using the RF energy supplied by the MS, the HNs deliver the gathered data to the MS arriving at the corresponding rendezvous points (RPs). In our works, the network energy consumption model of the MGWRSN is built, and the energy efficient dispatch strategy for the MS is studied, aiming at cutting down the total network energy consumption. For the simplest case, i.e., the one-HN MGWRSN, the optimal location of the RP is provided to minimize the total network energy consumption. After that, the researches are extended into the case of multi-HN MGWRSN and a heuristic dispatch strategy named HEEDS is proposed. Theoretical analysis and numerical results show that: (1) in the one-HN MGWRSN, the optimal location of the RP is close related to the data bulk to be transmitted, the unit mobility energy cost, the required bit error rate, the modulation scheme, and the departure position of the MS; (2) comparing with the existing algorithm WRP which directly dispatches the MS to the locations of HNs to collect data, the proposed strategy HEEDS is shown to be more energy efficient. Moreover, when a high energy transfer power is available at the MS, HEEDS renders shorter packet delay compared to WRP.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
1
As mentioned in Sect. 2, the HNs are already given thus the information of HNs (e.g. the number and locations of HNs) is predetermined.
 
2
In our works, the data routing is constructed based on shortest-path-tree (SPT).
 
Literatur
1.
Zurück zum Zitat Tentzeris, M., Georgiadis, A., & Roselli, L. (2014). Energy harvesting and scavenging. Proceedings of the IEEE, 102(11), 1644–1648.CrossRef Tentzeris, M., Georgiadis, A., & Roselli, L. (2014). Energy harvesting and scavenging. Proceedings of the IEEE, 102(11), 1644–1648.CrossRef
2.
Zurück zum Zitat Zhang, Y., He, S., Chen, J., et al. (2013). Distributed sampling rate control for rechargeable sensor nodes with limited battery capacity. IEEE Transactions on Wireless Communications, 12(6), 3096–3106.CrossRef Zhang, Y., He, S., Chen, J., et al. (2013). Distributed sampling rate control for rechargeable sensor nodes with limited battery capacity. IEEE Transactions on Wireless Communications, 12(6), 3096–3106.CrossRef
3.
Zurück zum Zitat Colomer, J., Brufau, J., Miribel, P., et al. (2007). Novel autonomous low power VLSI system powered by ambient mechanical vibrations and solar cells for portable applications in a 0.13\(\mu \) technology. In Proceedings of the IEEE power electronics specialists conference, June 17–21, 2007. Colomer, J., Brufau, J., Miribel, P., et al. (2007). Novel autonomous low power VLSI system powered by ambient mechanical vibrations and solar cells for portable applications in a 0.13\(\mu \) technology. In Proceedings of the IEEE power electronics specialists conference, June 17–21, 2007.
4.
Zurück zum Zitat Tan, Y. K., & Panda, S. K. (2011). Energy harvesting from hybrid indoor ambient light and thermal energy sources for enhanced performance of wireless sensor nodes. IEEE Transactions on Industrial Electronics, 58(9), 4424–4435.CrossRef Tan, Y. K., & Panda, S. K. (2011). Energy harvesting from hybrid indoor ambient light and thermal energy sources for enhanced performance of wireless sensor nodes. IEEE Transactions on Industrial Electronics, 58(9), 4424–4435.CrossRef
5.
Zurück zum Zitat Kim, S., Vyas, R., Bito, J., et al. (2014). Ambient RF energy-harvesting technologies for self-sustainable standalone wireless sensor platforms. Proceedings of the IEEE, 102(11), 1649–1666.CrossRef Kim, S., Vyas, R., Bito, J., et al. (2014). Ambient RF energy-harvesting technologies for self-sustainable standalone wireless sensor platforms. Proceedings of the IEEE, 102(11), 1649–1666.CrossRef
7.
Zurück zum Zitat Zungeru, A. M., Ang, L. M., Prabaharan, S., et al. (2012). Radio frequency energy harvesting and management for wireless sensor networks. In Green mobile devices and networks: energy optimization and scavenging techniques (pp. 341–368). CRC Press. Zungeru, A. M., Ang, L. M., Prabaharan, S., et al. (2012). Radio frequency energy harvesting and management for wireless sensor networks. In Green mobile devices and networks: energy optimization and scavenging techniques (pp. 341–368). CRC Press.
8.
Zurück zum Zitat Ajmal, T., Dyo, V., Allen, B., et al. (2014). Design and optimisation of compact RF energy harvesting device for smart applications. Electronics Letters, 50(2), 111–113.CrossRef Ajmal, T., Dyo, V., Allen, B., et al. (2014). Design and optimisation of compact RF energy harvesting device for smart applications. Electronics Letters, 50(2), 111–113.CrossRef
9.
Zurück zum Zitat Krikidis, I., Timotheou, S., & Sasaki, S. (2012). RF energy transfer for cooperative networks: Data relaying or energy harvesting. IEEE Communications Letters, 16(11), 1772–1775.CrossRef Krikidis, I., Timotheou, S., & Sasaki, S. (2012). RF energy transfer for cooperative networks: Data relaying or energy harvesting. IEEE Communications Letters, 16(11), 1772–1775.CrossRef
10.
Zurück zum Zitat He, S., Chen, J., Jiang, F., et al. (2013). Energy provisioning in wireless rechargeable sensor networks. IEEE Transactions on Mobile Computing, 12(10), 1931–1942.CrossRef He, S., Chen, J., Jiang, F., et al. (2013). Energy provisioning in wireless rechargeable sensor networks. IEEE Transactions on Mobile Computing, 12(10), 1931–1942.CrossRef
11.
Zurück zum Zitat Cheng, P., He, S., Jiang, F., et al. (2013). Optimal scheduling for quality of monitoring in wireless rechargeable sensor networks. IEEE Transactions on Wireless Communications, 12(6), 3072–3084.CrossRef Cheng, P., He, S., Jiang, F., et al. (2013). Optimal scheduling for quality of monitoring in wireless rechargeable sensor networks. IEEE Transactions on Wireless Communications, 12(6), 3072–3084.CrossRef
12.
Zurück zum Zitat Ju, H., & Zhang, R. (2014). Throughput maximization in wireless powered communication networks. IEEE Transactions on Wireless Communications, 13(1), 418–428.CrossRef Ju, H., & Zhang, R. (2014). Throughput maximization in wireless powered communication networks. IEEE Transactions on Wireless Communications, 13(1), 418–428.CrossRef
13.
Zurück zum Zitat Fu, L., He, L., Cheng, P., et al. (2015). ESync: Energy synchronized mobile charging in rechargeable wireless sensor networks. IEEE Transactions on Vehicular Technology. doi:10.1109/TVT.2015.2481920. Fu, L., He, L., Cheng, P., et al. (2015). ESync: Energy synchronized mobile charging in rechargeable wireless sensor networks. IEEE Transactions on Vehicular Technology. doi:10.​1109/​TVT.​2015.​2481920.
14.
Zurück zum Zitat Sample, A., Yaniel, D., Powledge, P., et al. (2008). Design of an RFID-based battery-free programmable sensing platform. IEEE Transactions on Instrumentation and Measurement, 57(11), 2608–2615.CrossRef Sample, A., Yaniel, D., Powledge, P., et al. (2008). Design of an RFID-based battery-free programmable sensing platform. IEEE Transactions on Instrumentation and Measurement, 57(11), 2608–2615.CrossRef
15.
Zurück zum Zitat Varshney, L. R. (2008). Transporting information and energy simultaneously. In Proceedings of the IEEE international symposium on information theory, July 6–11, 2008. Varshney, L. R. (2008). Transporting information and energy simultaneously. In Proceedings of the IEEE international symposium on information theory, July 6–11, 2008.
16.
Zurück zum Zitat Park, J., & Clerckx, B. (2013). Joint wireless information and energy transfer in a two-user MIMO interference channel. IEEE Transactions on Wireless Communications, 12(8), 4210–4221.CrossRef Park, J., & Clerckx, B. (2013). Joint wireless information and energy transfer in a two-user MIMO interference channel. IEEE Transactions on Wireless Communications, 12(8), 4210–4221.CrossRef
17.
Zurück zum Zitat Lee, S., Liu, L., & Zhang, R. (2015). Collaborative wireless energy and information transfer in interference channel. IEEE Transactions on Wireless Communications, 14(1), 545–557.CrossRef Lee, S., Liu, L., & Zhang, R. (2015). Collaborative wireless energy and information transfer in interference channel. IEEE Transactions on Wireless Communications, 14(1), 545–557.CrossRef
18.
Zurück zum Zitat Salarian, H., Chin, K., & Naghdy, F. (2014). An energy-efficient mobile-sink path selection strategy for wireless sensor networks. IEEE Transactions on Vehicular Technology, 63(5), 2407–2419.CrossRef Salarian, H., Chin, K., & Naghdy, F. (2014). An energy-efficient mobile-sink path selection strategy for wireless sensor networks. IEEE Transactions on Vehicular Technology, 63(5), 2407–2419.CrossRef
19.
Zurück zum Zitat Liu, W., Lu, K., Wang, J., et al. (2012). Performance analysis of wireless sensor networks with mobile sinks. IEEE Transactions on Vehicular Technology, 61(6), 2777–2788.CrossRef Liu, W., Lu, K., Wang, J., et al. (2012). Performance analysis of wireless sensor networks with mobile sinks. IEEE Transactions on Vehicular Technology, 61(6), 2777–2788.CrossRef
20.
Zurück zum Zitat Zhao, M., Yang, Y., & Wang, C. (2015). Mobile data gathering with load balanced clustering and dual data uploading in wireless sensor networks. IEEE Transactions on Mobile Computing, 14(4), 770–785.CrossRef Zhao, M., Yang, Y., & Wang, C. (2015). Mobile data gathering with load balanced clustering and dual data uploading in wireless sensor networks. IEEE Transactions on Mobile Computing, 14(4), 770–785.CrossRef
21.
Zurück zum Zitat Xie, L., Shi, Y., Hou, Y. T., et al. (2012). Making sensor networks immortal: An energy-renewal approach with wireless power transfer. EEE/ACM Transactions on Networking, 20(6), 1350–1358. Xie, L., Shi, Y., Hou, Y. T., et al. (2012). Making sensor networks immortal: An energy-renewal approach with wireless power transfer. EEE/ACM Transactions on Networking, 20(6), 1350–1358.
22.
Zurück zum Zitat Wang, C., Li, J., Ye, F., & Yang, Y. (2014). NETWRAP: An NDN based real-time wireless recharging framework for wireless sensor networks. IEEE Transactions on Mobile Computing, 13(6), 1283–1297.CrossRef Wang, C., Li, J., Ye, F., & Yang, Y. (2014). NETWRAP: An NDN based real-time wireless recharging framework for wireless sensor networks. IEEE Transactions on Mobile Computing, 13(6), 1283–1297.CrossRef
23.
Zurück zum Zitat Heinzelman, W. B., Chandrakasan, A. P., & Balakrishnan, H. (2002). An application-specific protocol architecture for wireless microsensor networks. IEEE Transactions on Wireless Communications, 1(4), 660–670.CrossRef Heinzelman, W. B., Chandrakasan, A. P., & Balakrishnan, H. (2002). An application-specific protocol architecture for wireless microsensor networks. IEEE Transactions on Wireless Communications, 1(4), 660–670.CrossRef
24.
Zurück zum Zitat El-Moukaddem, F., Torng, E., Xing, G., & Kulkarni, S. (2013). Mobile relay configuration in data-intensive wireless sensor networks. IEEE Transactions on Mobile Computing, 2(12), 261–273.CrossRef El-Moukaddem, F., Torng, E., Xing, G., & Kulkarni, S. (2013). Mobile relay configuration in data-intensive wireless sensor networks. IEEE Transactions on Mobile Computing, 2(12), 261–273.CrossRef
25.
Zurück zum Zitat Zhang, W., Duan, D., & Yang, L. (2011). Relay selection from a battery energy efficiency perspective. IEEE Transactions on Communications, 59(6), 1525–1529.CrossRef Zhang, W., Duan, D., & Yang, L. (2011). Relay selection from a battery energy efficiency perspective. IEEE Transactions on Communications, 59(6), 1525–1529.CrossRef
26.
Zurück zum Zitat Tse, D., & Viswanath, P. (2005). Fundamentals of wireless communications. Cambridge: Cambridge University Press.CrossRefMATH Tse, D., & Viswanath, P. (2005). Fundamentals of wireless communications. Cambridge: Cambridge University Press.CrossRefMATH
27.
Zurück zum Zitat Zhou, X., Zhang, R., & Ho, C. K. (2013). Wireless information and power transfer: Architecture design and rate-energy tradeoff. IEEE Transactions on Communications, 61(11), 4754–4767.CrossRef Zhou, X., Zhang, R., & Ho, C. K. (2013). Wireless information and power transfer: Architecture design and rate-energy tradeoff. IEEE Transactions on Communications, 61(11), 4754–4767.CrossRef
28.
Zurück zum Zitat Cormen, T. H., Cormen, C. E., Cormen, R. L., & Stein, C. (2001). Introduction to algorithms. Cambridge: MIT Press.MATH Cormen, T. H., Cormen, C. E., Cormen, R. L., & Stein, C. (2001). Introduction to algorithms. Cambridge: MIT Press.MATH
Metadaten
Titel
Energy efficient dispatch strategy for the dual-functional mobile sink in wireless rechargeable sensor networks
verfasst von
Xian Li
Qiuling Tang
Changyin Sun
Publikationsdatum
01.09.2016
Verlag
Springer US
Erschienen in
Wireless Networks / Ausgabe 3/2018
Print ISSN: 1022-0038
Elektronische ISSN: 1572-8196
DOI
https://doi.org/10.1007/s11276-016-1363-3

Weitere Artikel der Ausgabe 3/2018

Wireless Networks 3/2018 Zur Ausgabe

Neuer Inhalt