Skip to main content
Erschienen in: Wireless Networks 5/2018

08.12.2016

On the optimal anchor placement in single-hop sensor localization

verfasst von: Qing Miao, Baoqi Huang

Erschienen in: Wireless Networks | Ausgabe 5/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In wireless sensor networks, the problem of anchor (whose locations are a priori known) placement plays a vital role in improving the estimation accuracy of sensor (whose locations are unknown and need to be determined) locations. This paper deals with single-hop sensor localization from a novel perspective. On the one hand, unlike existing studies relying on ideal independent identically distributed (i.i.d.) noises in distance measurements, namely distance-independent noises, this paper defines a more realistic noise model in the sense that the noise variance is a function of sensor-to-anchor distances, namely distance-dependent noises. On the other hand, other than evaluating the localization performance for sensors at deterministic locations, a statistical approach is adopted by assuming a uniform and random distribution within a unit disk for the sensor location and evaluating the mean value of the associated Fisher information matrix determinant as the optimality metric for anchor placement. Through this metric, the optimal anchor placement is investigated from both theoretical and simulative perspectives. In the literature of optimal anchor placement with distance-independent noises, it has been addressed or conjectured to be true that it is optimal to have anchors equally spaced on the boundary. However, after a thorough analysis, it is shown that this conclusion is generally incorrect, but approaches to be true provided that the number of anchors goes to infinity. This study not only provides useful guidance for optimally deploying anchors in practice, but also yields valuable insights for future research on optimal anchor placement.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
1
Having only two anchors in a plane, though results in flip ambiguities, is indicative of understanding the characteristics of localization performance.
 
Literatur
1.
Zurück zum Zitat Ho, K. C., Lu, X., & Kovavisaruch, L. (2007). Source localization using TDOA and FDOA measurements in the presence of receiver location errors: Analysis and solution. IEEE Transactions on Signal Processing, 55(2), 684–696.MathSciNetCrossRefMATH Ho, K. C., Lu, X., & Kovavisaruch, L. (2007). Source localization using TDOA and FDOA measurements in the presence of receiver location errors: Analysis and solution. IEEE Transactions on Signal Processing, 55(2), 684–696.MathSciNetCrossRefMATH
2.
Zurück zum Zitat Huang, Y., Benesty, J., Elko, G. W., et al. (2001). Real-time passive source localization: A practical linear-correction least-squares approach. IEEE Transactions on Speech and Audio Processing, 9(8), 943–956.CrossRef Huang, Y., Benesty, J., Elko, G. W., et al. (2001). Real-time passive source localization: A practical linear-correction least-squares approach. IEEE Transactions on Speech and Audio Processing, 9(8), 943–956.CrossRef
3.
Zurück zum Zitat Yang, K., Wang, G., & Luo, Z. Q. (2009). Efficient convex relaxation methods for robust target localization by a sensor network using time differences of arrivals. IEEE Transactions on Signal Processing, 57(7), 2775–2784.MathSciNetCrossRef Yang, K., Wang, G., & Luo, Z. Q. (2009). Efficient convex relaxation methods for robust target localization by a sensor network using time differences of arrivals. IEEE Transactions on Signal Processing, 57(7), 2775–2784.MathSciNetCrossRef
4.
Zurück zum Zitat Xu, E., Ding, Z., & Dasgupta, S. (2011). Reduced complexity semidefinite relaxation algorithms for source localization based on time difference of arrival. IEEE Transactions on Mobile Computing, 10(9), 1276–1282.CrossRef Xu, E., Ding, Z., & Dasgupta, S. (2011). Reduced complexity semidefinite relaxation algorithms for source localization based on time difference of arrival. IEEE Transactions on Mobile Computing, 10(9), 1276–1282.CrossRef
5.
Zurück zum Zitat Huang, B., Xie, L., & Yang, Z. (2015). TDOA-based source localization with distance-dependent noises. IEEE Transactions on Wireless Communications, 14(1), 468–480.CrossRef Huang, B., Xie, L., & Yang, Z. (2015). TDOA-based source localization with distance-dependent noises. IEEE Transactions on Wireless Communications, 14(1), 468–480.CrossRef
6.
Zurück zum Zitat Zou, H., Huang, B., Lu, X., Jiang, H., & Xie, L. (2016). A robust indoor positioning system based on the procrustes analysis and weighted extreme learning machine. IEEE Transactions on Wireless Communications, 15(2), 1252–1266.CrossRef Zou, H., Huang, B., Lu, X., Jiang, H., & Xie, L. (2016). A robust indoor positioning system based on the procrustes analysis and weighted extreme learning machine. IEEE Transactions on Wireless Communications, 15(2), 1252–1266.CrossRef
7.
Zurück zum Zitat Dissanayake, M. W. M. G., Newman, P., Clark, S., et al. (2001). A solution to the simultaneous localization and map building (SLAM) problem. IEEE Transactions on Robotics and Automation, 17(3), 229–241.CrossRef Dissanayake, M. W. M. G., Newman, P., Clark, S., et al. (2001). A solution to the simultaneous localization and map building (SLAM) problem. IEEE Transactions on Robotics and Automation, 17(3), 229–241.CrossRef
8.
Zurück zum Zitat Pathirana, P. N., Bulusu, N., Savkin, A. V., et al. (2005). Node localization using mobile robots in delay-tolerant sensor networks. IEEE Transactions on Mobile Computing, 4(3), 285–296.CrossRef Pathirana, P. N., Bulusu, N., Savkin, A. V., et al. (2005). Node localization using mobile robots in delay-tolerant sensor networks. IEEE Transactions on Mobile Computing, 4(3), 285–296.CrossRef
9.
Zurück zum Zitat Van Trees, H. L. (2004). Detection, estimation, and modulation theory. Hoboken: Wiley.MATH Van Trees, H. L. (2004). Detection, estimation, and modulation theory. Hoboken: Wiley.MATH
10.
Zurück zum Zitat Lanzisera, S. M., & Pister, K. (2009). RF ranging for location awareness. Berkeley: University of California. Lanzisera, S. M., & Pister, K. (2009). RF ranging for location awareness. Berkeley: University of California.
11.
Zurück zum Zitat Lanzisera, S., Zats, D., & Pister, K. S. J. (2011). Radio frequency time-of-flight distance measurement for low-cost wireless sensor localization. IEEE Sensors Journal, 11(3), 837–845.CrossRef Lanzisera, S., Zats, D., & Pister, K. S. J. (2011). Radio frequency time-of-flight distance measurement for low-cost wireless sensor localization. IEEE Sensors Journal, 11(3), 837–845.CrossRef
12.
Zurück zum Zitat Cassioli, D., Win, M. Z., & Molisch, A. F. (2002). The ultra-wide bandwidth indoor channel: From statistical model to simulations. IEEE Journal on Selected Areas in Communications, 20(6), 1247–1257.CrossRef Cassioli, D., Win, M. Z., & Molisch, A. F. (2002). The ultra-wide bandwidth indoor channel: From statistical model to simulations. IEEE Journal on Selected Areas in Communications, 20(6), 1247–1257.CrossRef
13.
Zurück zum Zitat Bishop, A. N., Fidan, B., Anderson, B. D. O., et al. (2010). Optimality analysis of sensor-target localization geometries. Automatica, 46(3), 479–492.MathSciNetCrossRefMATH Bishop, A. N., Fidan, B., Anderson, B. D. O., et al. (2010). Optimality analysis of sensor-target localization geometries. Automatica, 46(3), 479–492.MathSciNetCrossRefMATH
14.
Zurück zum Zitat Meng, W., Xie, L., & Xiao, W. (2013). Decentralized TDOA sensor pairing in multihop wireless sensor networks. IEEE Signal Processing Letters, 20(2), 181–184.CrossRef Meng, W., Xie, L., & Xiao, W. (2013). Decentralized TDOA sensor pairing in multihop wireless sensor networks. IEEE Signal Processing Letters, 20(2), 181–184.CrossRef
15.
Zurück zum Zitat Isaacs, J. T., Klein, D. J., & Hespanha, J. P. (2009). Optimal sensor placement for time difference of arrival localization. In: Proceedings of the 48th IEEE conference on decision and control, 2009 held jointly with the 2009 28th Chinese control conference, CDC/CCC 2009. IEEE, pp. 7878–7884. Isaacs, J. T., Klein, D. J., & Hespanha, J. P. (2009). Optimal sensor placement for time difference of arrival localization. In: Proceedings of the 48th IEEE conference on decision and control, 2009 held jointly with the 2009 28th Chinese control conference, CDC/CCC 2009. IEEE, pp. 7878–7884.
16.
Zurück zum Zitat Salman, N., Maheshwari, H. K., Kemp, A. H., et al. (2011). Effects of anchor placement on mean-CRB for localization. In Ad hoc networking workshop (Med-Hoc-Net), 2011 The 10th IFIP annual mediterranean. IEEE, pp. 115–118. Salman, N., Maheshwari, H. K., Kemp, A. H., et al. (2011). Effects of anchor placement on mean-CRB for localization. In Ad hoc networking workshop (Med-Hoc-Net), 2011 The 10th IFIP annual mediterranean. IEEE, pp. 115–118.
17.
Zurück zum Zitat Ling, Y., Alexander, S., & Lau, R. (2012). On quantification of anchor placement. In Proceedings IEEE, INFOCOM, 2012. IEEE, pp. 2192–2200. Ling, Y., Alexander, S., & Lau, R. (2012). On quantification of anchor placement. In Proceedings IEEE, INFOCOM, 2012. IEEE, pp. 2192–2200.
18.
Zurück zum Zitat Lasla, N., Younis, M., Ouadjaout, A., et al. (2015). On optimal anchor placement for efficient area-based localization in wireless networks. 2015 IEEE international conference on communications (ICC). IEEE, pp. 3257–3262. Lasla, N., Younis, M., Ouadjaout, A., et al. (2015). On optimal anchor placement for efficient area-based localization in wireless networks. 2015 IEEE international conference on communications (ICC). IEEE, pp. 3257–3262.
19.
Zurück zum Zitat Deora, S., & Krishnamachari, B. (2014). Harnessing non-uniform transmit power levels for improved sequence based localization. 2014 IEEE international conference on distributed computing in sensor systems. IEEE, pp. 43–50. Deora, S., & Krishnamachari, B. (2014). Harnessing non-uniform transmit power levels for improved sequence based localization. 2014 IEEE international conference on distributed computing in sensor systems. IEEE, pp. 43–50.
20.
Zurück zum Zitat Huang, B., Yu, C., & Anderson, B. D. O. (2012). Analyzing localization errors in one-dimensional sensor networks. Signal Processing, 92(2), 427–438. Huang, B., Yu, C., & Anderson, B. D. O. (2012). Analyzing localization errors in one-dimensional sensor networks. Signal Processing, 92(2), 427–438.
21.
Zurück zum Zitat Huang, B., Li, T., Anderson, B. D. O., et al. (2013). Performance limits in sensor localization. Automatica, 49(2), 503–509.MathSciNetCrossRefMATH Huang, B., Li, T., Anderson, B. D. O., et al. (2013). Performance limits in sensor localization. Automatica, 49(2), 503–509.MathSciNetCrossRefMATH
22.
Zurück zum Zitat Ash, J. N., & Moses, R. L. (2008). On optimal anchor node placement in sensor localization by optimization of subspace principal angles. In 2008 IEEE international conference on acoustics, speech and signal processing. IEEE, pp. 2289–2292. Ash, J. N., & Moses, R. L. (2008). On optimal anchor node placement in sensor localization by optimization of subspace principal angles. In 2008 IEEE international conference on acoustics, speech and signal processing. IEEE, pp. 2289–2292.
23.
Zurück zum Zitat Chan, Y. T., Hang, H. Y. C., & Ching, P. (2006). Exact and approximate maximum likelihood localization algorithms. IEEE Transactions on Vehicular Technology, 55(1), 10–16.CrossRef Chan, Y. T., Hang, H. Y. C., & Ching, P. (2006). Exact and approximate maximum likelihood localization algorithms. IEEE Transactions on Vehicular Technology, 55(1), 10–16.CrossRef
24.
Zurück zum Zitat Zhu, S., & Ding, Z. (2010). Joint synchronization and localization using TOAs: A linearization based WLS solution. IEEE Journal on Selected Areas in Communications, 28(7), 1017–1025.CrossRef Zhu, S., & Ding, Z. (2010). Joint synchronization and localization using TOAs: A linearization based WLS solution. IEEE Journal on Selected Areas in Communications, 28(7), 1017–1025.CrossRef
25.
Zurück zum Zitat Patwari, N., Hero, A. O., Perkins, M., et al. (2003). Relative location estimation in wireless sensor networks. IEEE Transactions on Signal Processing, 51(8), 2137–2148.CrossRef Patwari, N., Hero, A. O., Perkins, M., et al. (2003). Relative location estimation in wireless sensor networks. IEEE Transactions on Signal Processing, 51(8), 2137–2148.CrossRef
26.
Zurück zum Zitat Perez-Ramirez, J., Borah, D. K., & Voelz, D. G. (2013). Optimal 3-D landmark placement for vehicle localization using heterogeneous sensors. IEEE Transactions on Vehicular Technology, 62(7), 2987–2999.CrossRef Perez-Ramirez, J., Borah, D. K., & Voelz, D. G. (2013). Optimal 3-D landmark placement for vehicle localization using heterogeneous sensors. IEEE Transactions on Vehicular Technology, 62(7), 2987–2999.CrossRef
27.
Zurück zum Zitat Huang, B., Yu, C., & Anderson, B. D. O. (2013). Understanding error propagation in multihop sensor network localization. IEEE Transactions on Industrial Electronics, 60(12), 5811–5819. Huang, B., Yu, C., & Anderson, B. D. O. (2013). Understanding error propagation in multihop sensor network localization. IEEE Transactions on Industrial Electronics, 60(12), 5811–5819.
28.
Zurück zum Zitat Niculescu, D., & Nath, B. (2004). Error characteristics of ad hoc positioning systems (APS). In Proceedings of the 5th ACM international symposium on Mobile ad hoc networking and computing. ACM, pp. 20–30. Niculescu, D., & Nath, B. (2004). Error characteristics of ad hoc positioning systems (APS). In Proceedings of the 5th ACM international symposium on Mobile ad hoc networking and computing. ACM, pp. 20–30.
Metadaten
Titel
On the optimal anchor placement in single-hop sensor localization
verfasst von
Qing Miao
Baoqi Huang
Publikationsdatum
08.12.2016
Verlag
Springer US
Erschienen in
Wireless Networks / Ausgabe 5/2018
Print ISSN: 1022-0038
Elektronische ISSN: 1572-8196
DOI
https://doi.org/10.1007/s11276-016-1424-7

Weitere Artikel der Ausgabe 5/2018

Wireless Networks 5/2018 Zur Ausgabe

Neuer Inhalt