Skip to main content
Erschienen in: Wireless Networks 4/2021

30.03.2021

Smart grid cyber-physical systems: communication technologies, standards and challenges

verfasst von: A. V. Jha, B. Appasani, A. N. Ghazali, P. Pattanayak, D. S. Gurjar, E. Kabalci, D. K. Mohanta

Erschienen in: Wireless Networks | Ausgabe 4/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The recent developments in embedded system design and communication technologies popularized the adaption of the cyber-physical system (CPS) for practical applications. A CPS is an amalgamation of a physical system, a cyber system, and their communication network. The cyber system performs extensive computational operations on the data received from the physical devices, interprets the data, and initiates effective control actions in real-time. One such CPS is the smart grid CPS (SG-CPS) consisting of physical devices with diverse communication requirements, and intermediate communication networks. Thus, reliable communication networks are paramount for the effective operation of the SG-CPS. This paper is an elaborate survey on the communication networks from the perspective of the SG-CPS. This paper presents the state-of-art communication technologies that can meet the communication requirements of the various SG-CPS applications. The communications standards and communication protocols are also comprehensively discussed. A systematic mapping among communication technologies, standards, and protocols for various SG-CPS applications has been presented based on an extensive literature survey in this paper. Furthermore, several challenges, such as security, safety, reliability and resilience, etc., have been addressed from SG-CPS’s perspective. This work also identifies the research gaps in the various domains of the SG-CPS that can be of immense benefit to the research community.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Jirkovský, V., Obitko, M., Kadera, P., & Mařík, V. (2018). Toward plug play cyber-physical system components. IEEE Transactions on Industrial Informatics, 14(6), 2803–2811.CrossRef Jirkovský, V., Obitko, M., Kadera, P., & Mařík, V. (2018). Toward plug play cyber-physical system components. IEEE Transactions on Industrial Informatics, 14(6), 2803–2811.CrossRef
2.
Zurück zum Zitat Zhou, Y., Yu, F. R., Chen, J., & Kuo, Y. (2020). Cyber-physical-social systems: A state-of-the-art survey, challenges and opportunities. IEEE Communications Surveys Tutorials, 22(1), 389–425.CrossRef Zhou, Y., Yu, F. R., Chen, J., & Kuo, Y. (2020). Cyber-physical-social systems: A state-of-the-art survey, challenges and opportunities. IEEE Communications Surveys Tutorials, 22(1), 389–425.CrossRef
3.
Zurück zum Zitat Yu, X., & Xue, Y. (2016). Smart grids: A cyber-physical systems perspective. Proceedings of the IEEE, 104(5), 1058–1070.CrossRef Yu, X., & Xue, Y. (2016). Smart grids: A cyber-physical systems perspective. Proceedings of the IEEE, 104(5), 1058–1070.CrossRef
4.
Zurück zum Zitat Serpanos, D. (2018). The cyber-physical systems revolution. Computer, 51(3), 70–73.CrossRef Serpanos, D. (2018). The cyber-physical systems revolution. Computer, 51(3), 70–73.CrossRef
5.
Zurück zum Zitat Leitão, P., Karnouskos, S., Ribeiro, L., Lee, J., Strasser, T., & Colombo, A. W. (2016). Smart agents in industrial cyber-physical systems. Proceedings of the IEEE, 104(5), 1086–1101.CrossRef Leitão, P., Karnouskos, S., Ribeiro, L., Lee, J., Strasser, T., & Colombo, A. W. (2016). Smart agents in industrial cyber-physical systems. Proceedings of the IEEE, 104(5), 1086–1101.CrossRef
6.
Zurück zum Zitat Harvey, M. J., Liu, X., & Chow, J. Y. J. (2016). A tablet-based surrogate system architecture for “in-situ’’ evaluation of cyber-physical transport technologies. IEEE Intelligent Transportation Systems Magazine, 8(4), 79–91.CrossRef Harvey, M. J., Liu, X., & Chow, J. Y. J. (2016). A tablet-based surrogate system architecture for “in-situ’’ evaluation of cyber-physical transport technologies. IEEE Intelligent Transportation Systems Magazine, 8(4), 79–91.CrossRef
7.
Zurück zum Zitat Tang, J., Ibrahim, M., & Chakrabarty, K. (2019). Randomized checkpoints: A practical defense for cyber-physical microfluidic systems. IEEE Design Test, 36(1), 5–13.CrossRef Tang, J., Ibrahim, M., & Chakrabarty, K. (2019). Randomized checkpoints: A practical defense for cyber-physical microfluidic systems. IEEE Design Test, 36(1), 5–13.CrossRef
8.
Zurück zum Zitat Watteyne, T., Handziski, V., Vilajosana, X., Duquennoy, S., Hahm, O., Baccelli, E., & Wolisz, A. (2016). Industrial wireless ip-based cyber -physical systems. Proceedings of the IEEE, 104(5), 1025–1038.CrossRef Watteyne, T., Handziski, V., Vilajosana, X., Duquennoy, S., Hahm, O., Baccelli, E., & Wolisz, A. (2016). Industrial wireless ip-based cyber -physical systems. Proceedings of the IEEE, 104(5), 1025–1038.CrossRef
9.
Zurück zum Zitat Rajabi Shishvan, O., Zois, D., & Soyata, T. (2018). Machine intelligence in healthcare and medical cyber physical systems: A survey. IEEE Access, 6, 46-419-46–494.CrossRef Rajabi Shishvan, O., Zois, D., & Soyata, T. (2018). Machine intelligence in healthcare and medical cyber physical systems: A survey. IEEE Access, 6, 46-419-46–494.CrossRef
10.
Zurück zum Zitat Kim, S., Won, Y., Park, I., Eun, Y., & Park, K. (2019). Cyber-physical vulnerability analysis of communication-based train control. IEEE Internet of Things Journal, 6(4), 6353–6362.CrossRef Kim, S., Won, Y., Park, I., Eun, Y., & Park, K. (2019). Cyber-physical vulnerability analysis of communication-based train control. IEEE Internet of Things Journal, 6(4), 6353–6362.CrossRef
11.
Zurück zum Zitat Ernst, R. (2018). Automated driving: The cyber-physical perspective. Computer, 51(9), 76–79.CrossRef Ernst, R. (2018). Automated driving: The cyber-physical perspective. Computer, 51(9), 76–79.CrossRef
12.
Zurück zum Zitat Moness, M., & Moustafa, A. M. (2016). A survey of cyber-physical advances and challenges of wind energy conversion systems: Prospects for internet of energy. IEEE Internet of Things Journal, 3(2), 134–145.CrossRef Moness, M., & Moustafa, A. M. (2016). A survey of cyber-physical advances and challenges of wind energy conversion systems: Prospects for internet of energy. IEEE Internet of Things Journal, 3(2), 134–145.CrossRef
13.
Zurück zum Zitat Jia, D., Lu, K., Wang, J., Zhang, X., & Shen, X. (2016). A survey on platoon-based vehicular cyber-physical systems. IEEE Communications Surveys Tutorials, 18(1), 263–284.CrossRef Jia, D., Lu, K., Wang, J., Zhang, X., & Shen, X. (2016). A survey on platoon-based vehicular cyber-physical systems. IEEE Communications Surveys Tutorials, 18(1), 263–284.CrossRef
14.
Zurück zum Zitat Atat, R., Liu, L., Wu, J., Li, G., Ye, C., & Yang, Y. (2018). Big data meet cyber-physical systems: A panoramic survey. IEEE Access, 6, 73 603-73 636.CrossRef Atat, R., Liu, L., Wu, J., Li, G., Ye, C., & Yang, Y. (2018). Big data meet cyber-physical systems: A panoramic survey. IEEE Access, 6, 73 603-73 636.CrossRef
15.
Zurück zum Zitat Rossi, B., & Chren, S. (2020). Smart grids data analysis: A systematic mapping study. IEEE Transactions on Industrial Informatics, 16(6), 3619–3639.CrossRef Rossi, B., & Chren, S. (2020). Smart grids data analysis: A systematic mapping study. IEEE Transactions on Industrial Informatics, 16(6), 3619–3639.CrossRef
16.
Zurück zum Zitat Xu, H., Yu, W., Griffith, D., & Golmie, N. (2018). A survey on industrial internet of things: A cyber-physical systems perspective. IEEE Access, 6, 78 238-78 259.CrossRef Xu, H., Yu, W., Griffith, D., & Golmie, N. (2018). A survey on industrial internet of things: A cyber-physical systems perspective. IEEE Access, 6, 78 238-78 259.CrossRef
17.
Zurück zum Zitat Yang, C., Zhabelova, G., Yang, C., & Vyatkin, V. (2013). Cosimulation environment for event-driven distributed controls of smart grid. IEEE Transactions on Industrial Informatics, 9(3), 1423–1435.CrossRef Yang, C., Zhabelova, G., Yang, C., & Vyatkin, V. (2013). Cosimulation environment for event-driven distributed controls of smart grid. IEEE Transactions on Industrial Informatics, 9(3), 1423–1435.CrossRef
18.
Zurück zum Zitat He, H., & Yan, J. (2016). Cyber-physical attacks and defences in the smart grid: a survey. IET Cyber-Physical Systems: Theory Applications, 1(1), 13–27.CrossRef He, H., & Yan, J. (2016). Cyber-physical attacks and defences in the smart grid: a survey. IET Cyber-Physical Systems: Theory Applications, 1(1), 13–27.CrossRef
19.
Zurück zum Zitat Wang, W., Xu, Y., & Khanna, M. (2011). A survey on the communication architectures in smart grid. Computer Networks, 55(15), 3604–3629.CrossRef Wang, W., Xu, Y., & Khanna, M. (2011). A survey on the communication architectures in smart grid. Computer Networks, 55(15), 3604–3629.CrossRef
20.
Zurück zum Zitat Yan, Y., Qian, Y., Sharif, H., & Tipper, D. (2013). A survey on smart grid communication infrastructures: Motivations, requirements and challenges. IEEE Communications Surveys Tutorials, 15(1), 5–20.CrossRef Yan, Y., Qian, Y., Sharif, H., & Tipper, D. (2013). A survey on smart grid communication infrastructures: Motivations, requirements and challenges. IEEE Communications Surveys Tutorials, 15(1), 5–20.CrossRef
21.
Zurück zum Zitat Gungor, V. C., Sahin, D., Kocak, T., Ergut, S., Buccella, C., Cecati, C., & Hancke, G. P. (2013). A survey on smart grid potential applications and communication requirements. IEEE Transactions on Industrial Informatics, 9(1), 28–42.CrossRef Gungor, V. C., Sahin, D., Kocak, T., Ergut, S., Buccella, C., Cecati, C., & Hancke, G. P. (2013). A survey on smart grid potential applications and communication requirements. IEEE Transactions on Industrial Informatics, 9(1), 28–42.CrossRef
22.
Zurück zum Zitat Rohjans, S., Uslar, M., Bleiker, R., González, J., Specht, M., Suding, T., & Weidelt, T. (2010). Survey of smart grid standardization studies and recommendations. First IEEE International Conference on Smart Grid Communications, 2010, 583–588. Rohjans, S., Uslar, M., Bleiker, R., González, J., Specht, M., Suding, T., & Weidelt, T. (2010). Survey of smart grid standardization studies and recommendations. First IEEE International Conference on Smart Grid Communications, 2010, 583–588.
23.
Zurück zum Zitat Bian, D., Kuzlu, M., Pipattanasomporn, M., Rahman, S., & Shi, D. (2019). Performance evaluation of communication technologies and network structure for smart grid applications. IET Communications, 13(8), 1025–1033.CrossRef Bian, D., Kuzlu, M., Pipattanasomporn, M., Rahman, S., & Shi, D. (2019). Performance evaluation of communication technologies and network structure for smart grid applications. IET Communications, 13(8), 1025–1033.CrossRef
24.
Zurück zum Zitat Palensky, P., Widl, E., & Elsheikh, A. (2014). Simulating cyber-physical energy systems: Challenges, tools and methods. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 44(3), 318–326.CrossRef Palensky, P., Widl, E., & Elsheikh, A. (2014). Simulating cyber-physical energy systems: Challenges, tools and methods. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 44(3), 318–326.CrossRef
25.
Zurück zum Zitat Poudel, S., Ni, Z., & Malla, N. (2017). Real-time cyber physical system testbed for power system security and control. International Journal of Electrical Power & Energy Systems, 90, 124–133.CrossRef Poudel, S., Ni, Z., & Malla, N. (2017). Real-time cyber physical system testbed for power system security and control. International Journal of Electrical Power & Energy Systems, 90, 124–133.CrossRef
26.
Zurück zum Zitat Holm, H., Karresand, M., Vidström, A., & Westring, E. (2015). A survey of industrial control system testbeds. In S. Buchegger & M. Dam (Eds.), Secure IT systems (pp. 11–26). Cham: Springer International Publishing.CrossRef Holm, H., Karresand, M., Vidström, A., & Westring, E. (2015). A survey of industrial control system testbeds. In S. Buchegger & M. Dam (Eds.), Secure IT systems (pp. 11–26). Cham: Springer International Publishing.CrossRef
27.
Zurück zum Zitat Hossain, E., Kabalci, E., Bayindir, R., & Perez, R. (2014). Microgrid testbeds around the world: State of art. Energy Conversion and Management, 86, 132–153.CrossRef Hossain, E., Kabalci, E., Bayindir, R., & Perez, R. (2014). Microgrid testbeds around the world: State of art. Energy Conversion and Management, 86, 132–153.CrossRef
28.
Zurück zum Zitat Sun, C.-C., Liu, C.-C., & Xie, J. (2016). Cyber-physical system security of a power grid: State-of-the-art. Electronics, 5, 2–18.CrossRef Sun, C.-C., Liu, C.-C., & Xie, J. (2016). Cyber-physical system security of a power grid: State-of-the-art. Electronics, 5, 2–18.CrossRef
29.
Zurück zum Zitat Li, F., Shi, Y., Shinde, A., Ye, J., & Song, W. (2019). Enhanced cyber-physical security in internet of things through energy auditing. IEEE Internet of Things Journal, 6(3), 5224–5231.CrossRef Li, F., Shi, Y., Shinde, A., Ye, J., & Song, W. (2019). Enhanced cyber-physical security in internet of things through energy auditing. IEEE Internet of Things Journal, 6(3), 5224–5231.CrossRef
30.
Zurück zum Zitat Liu, J., Xiao, Y., Li, S., Liang, W., & Chen, C. L. P. (2012). Cyber security and privacy issues in smart grids. IEEE Communications Surveys Tutorials, 14(4), 981–997.CrossRef Liu, J., Xiao, Y., Li, S., Liang, W., & Chen, C. L. P. (2012). Cyber security and privacy issues in smart grids. IEEE Communications Surveys Tutorials, 14(4), 981–997.CrossRef
31.
Zurück zum Zitat Giraldo, J., Sarkar, E., Cardenas, A. A., Maniatakos, M., & Kantarcioglu, M. (2017). Security and privacy in cyber-physical systems: A survey of surveys. IEEE Design & Test, 34(4), 7–17.CrossRef Giraldo, J., Sarkar, E., Cardenas, A. A., Maniatakos, M., & Kantarcioglu, M. (2017). Security and privacy in cyber-physical systems: A survey of surveys. IEEE Design & Test, 34(4), 7–17.CrossRef
32.
Zurück zum Zitat Tan, S., De, D., Song, W., Yang, J., & Das, S. K. (2017). Survey of security advances in smart grid: A data driven approach. IEEE Communications Surveys Tutorials, 19(1), 397–422.CrossRef Tan, S., De, D., Song, W., Yang, J., & Das, S. K. (2017). Survey of security advances in smart grid: A data driven approach. IEEE Communications Surveys Tutorials, 19(1), 397–422.CrossRef
33.
Zurück zum Zitat Kumar, P., Lin, Y., Bai, G., Paverd, A., Dong, J. S., & Martin, A. (2019). Smart grid metering networks: A survey on security, privacy and open research issues. IEEE Communications Surveys Tutorials, 21(3), 2886–2927.CrossRef Kumar, P., Lin, Y., Bai, G., Paverd, A., Dong, J. S., & Martin, A. (2019). Smart grid metering networks: A survey on security, privacy and open research issues. IEEE Communications Surveys Tutorials, 21(3), 2886–2927.CrossRef
34.
Zurück zum Zitat Jawurek, M., Kerschbaum, F., & Danezis, G. (2012). SoK: Privacy technologies for smart grids-a survey of options. Cambridge: Microsoft Res. Jawurek, M., Kerschbaum, F., & Danezis, G. (2012). SoK: Privacy technologies for smart grids-a survey of options. Cambridge: Microsoft Res.
35.
Zurück zum Zitat Tuinema, B. W., Rueda Torres, J. L., Stefanov, A. I., Gonzalez-Longatt, F. M., & van der Meijden, M. A. M. M. (2020). Cyber-physical system modeling for assessment and enhancement of power grid cyber security, resilience, and reliability (pp. 237–270). Cham: Springer International Publishing. Tuinema, B. W., Rueda Torres, J. L., Stefanov, A. I., Gonzalez-Longatt, F. M., & van der Meijden, M. A. M. M. (2020). Cyber-physical system modeling for assessment and enhancement of power grid cyber security, resilience, and reliability (pp. 237–270). Cham: Springer International Publishing.
36.
Zurück zum Zitat Zhu, Q. (2019). Multilayer cyber-physical security and resilience for smart grid (pp. 225–239). Cham: Springer International Publishing. Zhu, Q. (2019). Multilayer cyber-physical security and resilience for smart grid (pp. 225–239). Cham: Springer International Publishing.
37.
Zurück zum Zitat Xu, S., Qian, Y., & Hu, R. Q. (2015). On reliability of smart grid neighborhood area networks. IEEE Access, 3, 2352–2365.CrossRef Xu, S., Qian, Y., & Hu, R. Q. (2015). On reliability of smart grid neighborhood area networks. IEEE Access, 3, 2352–2365.CrossRef
38.
Zurück zum Zitat Ye, F., Qian, Y., Hu, R. Q., & Das, S. K. (2015). Reliable energy-efficient uplink transmission for neighborhood area networks in smart grid. IEEE Transactions on Smart Grid, 6(5), 2179–2188.CrossRef Ye, F., Qian, Y., Hu, R. Q., & Das, S. K. (2015). Reliable energy-efficient uplink transmission for neighborhood area networks in smart grid. IEEE Transactions on Smart Grid, 6(5), 2179–2188.CrossRef
39.
Zurück zum Zitat Li, Y., Yin, X., Wang, Z., Yao, J., Shi, X., Wu, J., et al. (2019). A survey on network verification and testing with formal methods: Approaches and challenges. IEEE Communications Surveys Tutorials, 21(1), 940–969.CrossRef Li, Y., Yin, X., Wang, Z., Yao, J., Shi, X., Wu, J., et al. (2019). A survey on network verification and testing with formal methods: Approaches and challenges. IEEE Communications Surveys Tutorials, 21(1), 940–969.CrossRef
40.
Zurück zum Zitat Haggi, H., nejad, R. R., Song, M., & Sun, W. (2019). “A review of smart grid restoration to enhance cyber-physical system resilience,” In 2019 IEEE innovative smart grid technologies - Asia (ISGT Asia), pp. 4008–4013. Haggi, H., nejad, R. R., Song, M., & Sun, W. (2019). “A review of smart grid restoration to enhance cyber-physical system resilience,” In 2019 IEEE innovative smart grid technologies - Asia (ISGT Asia), pp. 4008–4013.
41.
Zurück zum Zitat Cheng, Z., & Chow, M. (2020). “Resilient collaborative distributed energy management system framework for cyber-physical dc microgrids,” IEEE transactions on smart Grid, pp. 1. Cheng, Z., & Chow, M. (2020). “Resilient collaborative distributed energy management system framework for cyber-physical dc microgrids,” IEEE transactions on smart Grid, pp. 1.
42.
Zurück zum Zitat Monostori, L. (2014). “Cyber-physical production systems: Roots, expectations and R&D challenges,” Procedia CIRP, vol. 17, pp. 9 – 13, variety Management in Manufacturing. Monostori, L. (2014). “Cyber-physical production systems: Roots, expectations and R&D challenges,” Procedia CIRP, vol. 17, pp. 9 – 13, variety Management in Manufacturing.
43.
Zurück zum Zitat Karnouskos, S., Colombo, A. W., Bangemann, T., Manninen, K., Camp, R., Tilly, M., Stluka, P. Jammes, F., Delsing, J., & Eliasson, J. (2012). “A SOA-based architecture for empowering future collaborative cloud-based industrial automation,” In IECON 2012 - 38th annual conference on IEEE industrial electronics society, pp. 5766–5772. Karnouskos, S., Colombo, A. W., Bangemann, T., Manninen, K., Camp, R., Tilly, M., Stluka, P. Jammes, F., Delsing, J., & Eliasson, J. (2012). “A SOA-based architecture for empowering future collaborative cloud-based industrial automation,” In IECON 2012 - 38th annual conference on IEEE industrial electronics society, pp. 5766–5772.
44.
Zurück zum Zitat Zhao, J., Wen, F., Xue, Y., Li, X., & Dong, Z. (2010). Cyber-physical power systems: Architecture, implementation techniques and challenges. Chinese Automation of Electric Power Systems, 34(16), 1–7. Zhao, J., Wen, F., Xue, Y., Li, X., & Dong, Z. (2010). Cyber-physical power systems: Architecture, implementation techniques and challenges. Chinese Automation of Electric Power Systems, 34(16), 1–7.
45.
Zurück zum Zitat Deep Singh, K., & Sood, K. (2020). 5g ready optical fog-assisted cyber-physical system for iot applications. IET Cyber-Physical Systems: Theory Applications, 5(2), 137–144.CrossRef Deep Singh, K., & Sood, K. (2020). 5g ready optical fog-assisted cyber-physical system for iot applications. IET Cyber-Physical Systems: Theory Applications, 5(2), 137–144.CrossRef
46.
Zurück zum Zitat Shahid, A. (2016). Cyber-physical modeling and control of smart grids - a new paradigm. IEEE Power Energy Society Innovative Smart Grid Technologies Conference (ISGT), 2016, 1–5. Shahid, A. (2016). Cyber-physical modeling and control of smart grids - a new paradigm. IEEE Power Energy Society Innovative Smart Grid Technologies Conference (ISGT), 2016, 1–5.
47.
Zurück zum Zitat Karnouskos, S. (2011). “Cyber-physical systems in the smartgrid,” In 2011 9th IEEE international conference on industrial informatics, pp. 20–23. Karnouskos, S. (2011). “Cyber-physical systems in the smartgrid,” In 2011 9th IEEE international conference on industrial informatics, pp. 20–23.
48.
Zurück zum Zitat Lee, E. A. (2008). “Cyber physical systems: Design challenges,” In 2008 11th IEEE international symposium on object and component-oriented real-time distributed computing (ISORC), pp. 363–369. Lee, E. A. (2008). “Cyber physical systems: Design challenges,” In 2008 11th IEEE international symposium on object and component-oriented real-time distributed computing (ISORC), pp. 363–369.
49.
Zurück zum Zitat Wan, Y., Cao, J., Zhang, S., Tu, G., Lu, C., Xu, X., & Li, K. (2014). An integrated cyber-physical simulation environment for smart grid applications. Tsinghua Science and Technology, 19(2), 133–143.CrossRef Wan, Y., Cao, J., Zhang, S., Tu, G., Lu, C., Xu, X., & Li, K. (2014). An integrated cyber-physical simulation environment for smart grid applications. Tsinghua Science and Technology, 19(2), 133–143.CrossRef
50.
Zurück zum Zitat Lin, Hua, Sambamoorthy, S., Shukla, S., Thorp, J., & Mili, L. (2011). Power system and communication network co-simulation for smart grid applications. ISGT, 2011, 1–6. Lin, Hua, Sambamoorthy, S., Shukla, S., Thorp, J., & Mili, L. (2011). Power system and communication network co-simulation for smart grid applications. ISGT, 2011, 1–6.
51.
Zurück zum Zitat Li, H., Lai, L., & Poor, H. V. (2012). Multicast routing for decentralized control of cyber physical systems with an application in smart grid. IEEE Journal on Selected Areas in Communications, 30(6), 1097–1107.CrossRef Li, H., Lai, L., & Poor, H. V. (2012). Multicast routing for decentralized control of cyber physical systems with an application in smart grid. IEEE Journal on Selected Areas in Communications, 30(6), 1097–1107.CrossRef
52.
Zurück zum Zitat Ilić, M. D., Xie, L., Khan, U. A., & Moura, J. M. F. (2010). Modeling of future cyber-physical energy systems for distributed sensing and control. IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans, 40(4), 825–838.CrossRef Ilić, M. D., Xie, L., Khan, U. A., & Moura, J. M. F. (2010). Modeling of future cyber-physical energy systems for distributed sensing and control. IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans, 40(4), 825–838.CrossRef
53.
Zurück zum Zitat Su, Z., Xu, L., Xin, S., Li, W., Shi, Z., & Guo, Q. (2017). “A future outlook for cyber-physical power system,” In 2017 IEEE conference on energy internet and energy system integration (EI2), pp. 1–4. Su, Z., Xu, L., Xin, S., Li, W., Shi, Z., & Guo, Q. (2017). “A future outlook for cyber-physical power system,” In 2017 IEEE conference on energy internet and energy system integration (EI2), pp. 1–4.
54.
Zurück zum Zitat Xin, S., Guo, Q., Sun, H., Zhang, B., Wang, J., & Chen, C. (2015). Cyber-physical modeling and cyber-contingency assessment of hierarchical control systems. IEEE Transactions on Smart Grid, 6(5), 2375–2385.CrossRef Xin, S., Guo, Q., Sun, H., Zhang, B., Wang, J., & Chen, C. (2015). Cyber-physical modeling and cyber-contingency assessment of hierarchical control systems. IEEE Transactions on Smart Grid, 6(5), 2375–2385.CrossRef
55.
Zurück zum Zitat Li, W., Ferdowsi, M., Stevic, M., Monti, A., & Ponci, F. (2014). Co-simulation for smart grid communications. IEEE Transactions on Industrial Informatics, 10(4), 2374–2384.CrossRef Li, W., Ferdowsi, M., Stevic, M., Monti, A., & Ponci, F. (2014). Co-simulation for smart grid communications. IEEE Transactions on Industrial Informatics, 10(4), 2374–2384.CrossRef
56.
Zurück zum Zitat Kosek, A. M., Lünsdorf, O., Scherfke, S., Gehrke, O., & Rohjans, S. (2014). Evaluation of smart grid control strategies in co-simulation-integration of ipsys and mosaik. Power Systems Computation Conference, 2014, 1–7. Kosek, A. M., Lünsdorf, O., Scherfke, S., Gehrke, O., & Rohjans, S. (2014). Evaluation of smart grid control strategies in co-simulation-integration of ipsys and mosaik. Power Systems Computation Conference, 2014, 1–7.
57.
Zurück zum Zitat Cintuglu, M. H., Mohammed, O. A., Akkaya, K., & Uluagac, A. S. (2017). A survey on smart grid cyber-physical system testbeds. IEEE Communications Surveys Tutorials, 19(1), 446–464.CrossRef Cintuglu, M. H., Mohammed, O. A., Akkaya, K., & Uluagac, A. S. (2017). A survey on smart grid cyber-physical system testbeds. IEEE Communications Surveys Tutorials, 19(1), 446–464.CrossRef
58.
Zurück zum Zitat Locke, G., & Gallagher, P. D. (2010). “NIST framework and roadmap for smart grid interoperability standards,” The National Institute of Standards and Technology, vol. Release 10, Gaithersburg, MD, USA. Locke, G., & Gallagher, P. D. (2010). “NIST framework and roadmap for smart grid interoperability standards,” The National Institute of Standards and Technology, vol. Release 10, Gaithersburg, MD, USA.
59.
Zurück zum Zitat Bu, S., & Yu, F. R. (2013). A game-theoretical scheme in the smart grid with demand-side management: Towards a smart cyber-physical power infrastructure. IEEE Transactions on Emerging Topics in Computing, 1(1), 22–32.CrossRef Bu, S., & Yu, F. R. (2013). A game-theoretical scheme in the smart grid with demand-side management: Towards a smart cyber-physical power infrastructure. IEEE Transactions on Emerging Topics in Computing, 1(1), 22–32.CrossRef
61.
Zurück zum Zitat Matveev, A. S., & Savkin, A. V. (2009). Estimation and control over communication networks. Switzerland: Birkhäuser Basel.MATH Matveev, A. S., & Savkin, A. V. (2009). Estimation and control over communication networks. Switzerland: Birkhäuser Basel.MATH
62.
Zurück zum Zitat Li, H., Dimitrovski, A., Song, J. B., Han, Z., & Qian, L. (2014). Communication infrastructure design in cyber physical systems with applications in smart grids: A hybrid system framework. IEEE Communications Surveys Tutorials, 16(3), 1689–1708.CrossRef Li, H., Dimitrovski, A., Song, J. B., Han, Z., & Qian, L. (2014). Communication infrastructure design in cyber physical systems with applications in smart grids: A hybrid system framework. IEEE Communications Surveys Tutorials, 16(3), 1689–1708.CrossRef
63.
Zurück zum Zitat Appasani, B., & Mohanta, D. K. (2018). A review on synchrophasor communication system: Communication technologies, standards and applications. Protection and Control of Modern Power Systems, 3(37), 1–7. Appasani, B., & Mohanta, D. K. (2018). A review on synchrophasor communication system: Communication technologies, standards and applications. Protection and Control of Modern Power Systems, 3(37), 1–7.
64.
Zurück zum Zitat Gungor, V. C., Sahin, D., Kocak, T., Ergut, S., Buccella, C., Cecati, C., & Hancke, G. P. (2011). Smart grid technologies: Communication technologies and standards. IEEE Transactions on Industrial Informatics, 7(4), 529–539.CrossRef Gungor, V. C., Sahin, D., Kocak, T., Ergut, S., Buccella, C., Cecati, C., & Hancke, G. P. (2011). Smart grid technologies: Communication technologies and standards. IEEE Transactions on Industrial Informatics, 7(4), 529–539.CrossRef
65.
Zurück zum Zitat Naduvathuparambil, B., Valenti, M. C., & Feliachi, A. (2002). “Communication delays in wide area measurement systems,” In Proceedings of the Thirty-Fourth Southeastern Symposium on System Theory (Cat. No.02EX540), pp. 118–122. Naduvathuparambil, B., Valenti, M. C., & Feliachi, A. (2002). “Communication delays in wide area measurement systems,” In Proceedings of the Thirty-Fourth Southeastern Symposium on System Theory (Cat. No.02EX540), pp. 118–122.
66.
Zurück zum Zitat Hassan, H. A. H., Pelov, A., & Nuaymi, L. (2015). Integrating cellular networks, smart grid, and renewable energy: Analysis, architecture, and challenges. IEEE Access, 3, 2755–2770.CrossRef Hassan, H. A. H., Pelov, A., & Nuaymi, L. (2015). Integrating cellular networks, smart grid, and renewable energy: Analysis, architecture, and challenges. IEEE Access, 3, 2755–2770.CrossRef
67.
Zurück zum Zitat Kalalas, C., Thrybom, L., & Alonso-Zarate, J. (2016). Cellular communications for smart grid neighborhood area networks: A survey. IEEE Access, 4, 1469–1493.CrossRef Kalalas, C., Thrybom, L., & Alonso-Zarate, J. (2016). Cellular communications for smart grid neighborhood area networks: A survey. IEEE Access, 4, 1469–1493.CrossRef
68.
Zurück zum Zitat Meloni, A., & Atzori, L. (2017). The role of satellite communications in the smart grid. IEEE Wireless Communications, 24(2), 50–56.CrossRef Meloni, A., & Atzori, L. (2017). The role of satellite communications in the smart grid. IEEE Wireless Communications, 24(2), 50–56.CrossRef
72.
Zurück zum Zitat Martin, K. E. (2015). Synchrophasor measurements under the ieee standard c37.118.1-2011 with amendment c37.118.1a. IEEE Transactions on Power Delivery, 30(3), 1514–1522.CrossRef Martin, K. E. (2015). Synchrophasor measurements under the ieee standard c37.118.1-2011 with amendment c37.118.1a. IEEE Transactions on Power Delivery, 30(3), 1514–1522.CrossRef
73.
Zurück zum Zitat Martin, K. E., Brunello, G., Adamiak, M. G., Antonova, G., Begovic, M., Benmouyal, G., et al. (2014). An overview of the ieee standard c37.118.2-synchrophasor data transfer for power systems. IEEE Transactions on Smart Grid, 5(4), 1980–1984.CrossRef Martin, K. E., Brunello, G., Adamiak, M. G., Antonova, G., Begovic, M., Benmouyal, G., et al. (2014). An overview of the ieee standard c37.118.2-synchrophasor data transfer for power systems. IEEE Transactions on Smart Grid, 5(4), 1980–1984.CrossRef
74.
Zurück zum Zitat Ustun, T. S., Farooq, S. M., & Hussain, S. M. S. (2019). A novel approach for mitigation of replay and masquerade attacks in smartgrids using iec 61850 standard. IEEE Access, 7, 15 6044-15 6053.CrossRef Ustun, T. S., Farooq, S. M., & Hussain, S. M. S. (2019). A novel approach for mitigation of replay and masquerade attacks in smartgrids using iec 61850 standard. IEEE Access, 7, 15 6044-15 6053.CrossRef
76.
Zurück zum Zitat “IEC, IEC 62056-1-0,” Electricity metering data exchange - The DLMS/COSEM suite - Part 1-0: Smart metering standardisation framework, (International Electrotechnical Commission, 2014). “IEC, IEC 62056-1-0,” Electricity metering data exchange - The DLMS/COSEM suite - Part 1-0: Smart metering standardisation framework, (International Electrotechnical Commission, 2014).
77.
Zurück zum Zitat “IEC, IEC 62056-8-4,” Electricity metering data exchange - The DLMS/COSEM suite - Part 8-4: Communication profiles for narrow-band OFDM PLC PRIME neighbourhood networks, (International Electrotechnical Commission, 2018). “IEC, IEC 62056-8-4,” Electricity metering data exchange - The DLMS/COSEM suite - Part 8-4: Communication profiles for narrow-band OFDM PLC PRIME neighbourhood networks, (International Electrotechnical Commission, 2018).
79.
Zurück zum Zitat R. Y. et al., (2010). “The research on communication standard framework of smart grid,” In CICED 2010 proceedings, pp. 1–6. R. Y. et al., (2010). “The research on communication standard framework of smart grid,” In CICED 2010 proceedings, pp. 1–6.
80.
Zurück zum Zitat Hoga, C. (2007). New ethernet technologies for substation automation. IEEE Lausanne Power Technology, 2007, 707–712.CrossRef Hoga, C. (2007). New ethernet technologies for substation automation. IEEE Lausanne Power Technology, 2007, 707–712.CrossRef
81.
Zurück zum Zitat Appasani, B., Maddikara, J., & Mohanta, D. (2019). Standards and communication systems in smart grid. In E. Kabalci & Y. Kabalci (Eds.), Smart grids and their communication systems. energy systems in electrical engineering. Singapore: Springer. Appasani, B., Maddikara, J., & Mohanta, D. (2019). Standards and communication systems in smart grid. In E. Kabalci & Y. Kabalci (Eds.), Smart grids and their communication systems. energy systems in electrical engineering. Singapore: Springer.
82.
Zurück zum Zitat Mishra, S., Li, X., Pan, T., Kuhnle, A., Thai, M. T., & Seo, J. (2017). Price modification attack and protection scheme in smart grid. IEEE Transactions on Smart Grid, 8(4), 1864–1875.CrossRef Mishra, S., Li, X., Pan, T., Kuhnle, A., Thai, M. T., & Seo, J. (2017). Price modification attack and protection scheme in smart grid. IEEE Transactions on Smart Grid, 8(4), 1864–1875.CrossRef
83.
Zurück zum Zitat Sridhar, S., Hahn, A., & Govindarasu, M. (2012). Cyber attack-resilient control for smart grid. IEEE PES Innovative Smart Grid Technologies (ISGT), 2012, 1–3. Sridhar, S., Hahn, A., & Govindarasu, M. (2012). Cyber attack-resilient control for smart grid. IEEE PES Innovative Smart Grid Technologies (ISGT), 2012, 1–3.
84.
Zurück zum Zitat Clements, S., & Kirkham, H. (2010). Cyber-security considerations for the smart grid. IEEE PES General Meeting, 1–5. Clements, S., & Kirkham, H. (2010). Cyber-security considerations for the smart grid. IEEE PES General Meeting, 1–5.
86.
Zurück zum Zitat Lyu, X., Ding, Y., & Yang, S. (2019). Safety and security risk assessment in cyber-physical systems. IET Cyber-Physical Systems: Theory Applications, 4(3), 221–232.CrossRef Lyu, X., Ding, Y., & Yang, S. (2019). Safety and security risk assessment in cyber-physical systems. IET Cyber-Physical Systems: Theory Applications, 4(3), 221–232.CrossRef
87.
Zurück zum Zitat Li, X., Liang, X., Lu, R., Shen, X., Lin, X., & Zhu, H. (2012). Securing smart grid: cyber attacks, countermeasures, and challenges. IEEE Communications Magazine, 50(8), 38–45.CrossRef Li, X., Liang, X., Lu, R., Shen, X., Lin, X., & Zhu, H. (2012). Securing smart grid: cyber attacks, countermeasures, and challenges. IEEE Communications Magazine, 50(8), 38–45.CrossRef
88.
Zurück zum Zitat Peng, Y., Lu, T., Liu, J., Gao, Y., Guo, X., & Xie, F. (2013). Cyber-physical system risk assessment. Ninth International Conference on Intelligent Information Hiding and Multimedia Signal Processing, 2013, 442–447. Peng, Y., Lu, T., Liu, J., Gao, Y., Guo, X., & Xie, F. (2013). Cyber-physical system risk assessment. Ninth International Conference on Intelligent Information Hiding and Multimedia Signal Processing, 2013, 442–447.
89.
Zurück zum Zitat Stouffer, K., Falco, J., & Scarfone, K. (2011). Guide to industrial control systems (ICS) security. NIST Special Publications, 800(82), 29–32. Stouffer, K., Falco, J., & Scarfone, K. (2011). Guide to industrial control systems (ICS) security. NIST Special Publications, 800(82), 29–32.
92.
Zurück zum Zitat Moussa, B., Debbabi, M., & Assi, C. (2018). A detection and mitigation model for PTP delay attack in an IEC 61850 substation. IEEE Transactions on Smart Grid, 9(5), 3954–3965.CrossRef Moussa, B., Debbabi, M., & Assi, C. (2018). A detection and mitigation model for PTP delay attack in an IEC 61850 substation. IEEE Transactions on Smart Grid, 9(5), 3954–3965.CrossRef
93.
Zurück zum Zitat Roy, A., Kim, D. S., & Trivedi, K. S. (2012). “Scalable optimal countermeasure selection using implicit enumeration on attack countermeasure trees,” In Proceedings of IEEE/IFIP international conference on dependable systems and networks (DSN 2012), pp. 1–12. Roy, A., Kim, D. S., & Trivedi, K. S. (2012). “Scalable optimal countermeasure selection using implicit enumeration on attack countermeasure trees,” In Proceedings of IEEE/IFIP international conference on dependable systems and networks (DSN 2012), pp. 1–12.
94.
Zurück zum Zitat Ten, C., Liu, C., & Govindarasu, M. (2007). Vulnerability assessment of cybersecurity for scada systems using attack trees. Proceedings of IEEE Power Engineering Society General Meeting, 2007, 1–8. Ten, C., Liu, C., & Govindarasu, M. (2007). Vulnerability assessment of cybersecurity for scada systems using attack trees. Proceedings of IEEE Power Engineering Society General Meeting, 2007, 1–8.
95.
Zurück zum Zitat Sun, M., Mohan, L., & Sha, L. et al., (2009). “Addressing safety and security contradictions in cyber-physical systems,” In Proceedings of 1st workshop. future directions in cyber-physical systems security (CPSSW’09), Newark, New Jersey. Sun, M., Mohan, L., & Sha, L. et al., (2009). “Addressing safety and security contradictions in cyber-physical systems,” In Proceedings of 1st workshop. future directions in cyber-physical systems security (CPSSW’09), Newark, New Jersey.
96.
Zurück zum Zitat Young, W., & Leveson, N. (2013). “Systems thinking for safety and security,” In Proceedings of 29th annual computer security applications Conference (ACSAC), New Orleans, Louisiana, USA, pp. 1–8. Young, W., & Leveson, N. (2013). “Systems thinking for safety and security,” In Proceedings of 29th annual computer security applications Conference (ACSAC), New Orleans, Louisiana, USA, pp. 1–8.
97.
Zurück zum Zitat Shapiro, S. S. (2016). Privacy risk analysis based on system control structures: Adapting system-theoretic process analysis for privacy engineering. IEEE Security and Privacy Workshops (SPW), 2016, 17–24. Shapiro, S. S. (2016). Privacy risk analysis based on system control structures: Adapting system-theoretic process analysis for privacy engineering. IEEE Security and Privacy Workshops (SPW), 2016, 17–24.
98.
Zurück zum Zitat Huang, K., Zhou, C., Tian, Y. Tu, W., & Peng, Y. (2017). “Application of bayesian network to data-driven cyber-security risk assessment in scada networks,” In Proceedings of 2017 27th international telecommunication networks and applications conference (ITNAC), pp. 1–6. Huang, K., Zhou, C., Tian, Y. Tu, W., & Peng, Y. (2017). “Application of bayesian network to data-driven cyber-security risk assessment in scada networks,” In Proceedings of 2017 27th international telecommunication networks and applications conference (ITNAC), pp. 1–6.
99.
Zurück zum Zitat Zhang, Q., Zhou, C., Tian, Y., Xiong, N., Qin, Y., & Hu, B. (2018). A fuzzy probability bayesian network approach for dynamic cybersecurity risk assessment in industrial control systems. IEEE Transactions on Industrial Informatics, 14(6), 2497–2506.CrossRef Zhang, Q., Zhou, C., Tian, Y., Xiong, N., Qin, Y., & Hu, B. (2018). A fuzzy probability bayesian network approach for dynamic cybersecurity risk assessment in industrial control systems. IEEE Transactions on Industrial Informatics, 14(6), 2497–2506.CrossRef
100.
Zurück zum Zitat Zhang, Q., Zhou, C., Xiong, N., Qin, Y., Li, X., & Huang, S. (2016). Multimodel-based incident prediction and risk assessment in dynamic cybersecurity protection for industrial control systems. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 46(10), 1429–1444.CrossRef Zhang, Q., Zhou, C., Xiong, N., Qin, Y., Li, X., & Huang, S. (2016). Multimodel-based incident prediction and risk assessment in dynamic cybersecurity protection for industrial control systems. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 46(10), 1429–1444.CrossRef
101.
Zurück zum Zitat Ding, Q., Wang, X., Zhu, J., et al. (2018). Information security framework based on blockchain for cyber-physics system. Computer Science, 45(2), 32–39. Ding, Q., Wang, X., Zhu, J., et al. (2018). Information security framework based on blockchain for cyber-physics system. Computer Science, 45(2), 32–39.
102.
Zurück zum Zitat Veeramany, A., Coles, G. A., Unwin, S. D., Nguyen, T. B., & Dagle, J. E. (2018). Trial implementation of a multihazard risk assessment framework for high-impact low-frequency power grid events. IEEE Systems Journal, 12(4), 3807–3815.CrossRef Veeramany, A., Coles, G. A., Unwin, S. D., Nguyen, T. B., & Dagle, J. E. (2018). Trial implementation of a multihazard risk assessment framework for high-impact low-frequency power grid events. IEEE Systems Journal, 12(4), 3807–3815.CrossRef
103.
Zurück zum Zitat Yoshimura, I., & Sato, Y. (2008). Safety achieved by the safe failure fraction (sff) in iec 61508. IEEE Transactions on Reliability, 57(4), 662–669.CrossRef Yoshimura, I., & Sato, Y. (2008). Safety achieved by the safe failure fraction (sff) in iec 61508. IEEE Transactions on Reliability, 57(4), 662–669.CrossRef
105.
Zurück zum Zitat Pan, D., Liu, F., Zhou, X., & Li, T. (2008). “Functional safety in building automation and control systems,” In Proceedings of 2008 3rd IEEE Conference on Industrial Electronics and Applications, pp. 467–470. Pan, D., Liu, F., Zhou, X., & Li, T. (2008). “Functional safety in building automation and control systems,” In Proceedings of 2008 3rd IEEE Conference on Industrial Electronics and Applications, pp. 467–470.
106.
Zurück zum Zitat Sabaliauskaite, G., & Mathur, A. (2015). “Aligning cyber-physical system safety and security,” In Proceedings of 1st Asia - Pacific Conference on Complex Systems Design & Management, Singapore, pp. 41–53. Sabaliauskaite, G., & Mathur, A. (2015). “Aligning cyber-physical system safety and security,” In Proceedings of 1st Asia - Pacific Conference on Complex Systems Design & Management, Singapore, pp. 41–53.
107.
Zurück zum Zitat Nourian, A., & Madnick, S. (2018). A systems theoretic approach to the security threats in cyber physical systems applied to stuxnet. IEEE Transactions on Dependable and Secure Computing, 15(1), 2–13.CrossRef Nourian, A., & Madnick, S. (2018). A systems theoretic approach to the security threats in cyber physical systems applied to stuxnet. IEEE Transactions on Dependable and Secure Computing, 15(1), 2–13.CrossRef
108.
Zurück zum Zitat Grunske, L., Colvin, R., & Winter, K. (2007). “Probabilistic model-checking support for fmea,” In Fourth International Conference on the Quantitative Evaluation of Systems (QEST 2007), pp. 119–128. Grunske, L., Colvin, R., & Winter, K. (2007). “Probabilistic model-checking support for fmea,” In Fourth International Conference on the Quantitative Evaluation of Systems (QEST 2007), pp. 119–128.
109.
Zurück zum Zitat Ebeling, C. (2009). An Introduction to Reliability and Maintainability Engineering. Long Grove, Illinois: Waveland Press. (1997). Ebeling, C. (2009). An Introduction to Reliability and Maintainability Engineering. Long Grove, Illinois: Waveland Press. (1997).
110.
Zurück zum Zitat Dunjó, J., Fthenakis, V., Vílchez, J., et al. (2010). Hazard and operability (HAZOP) analysis, a literature review. Journal of Hazardous Materials, 173(1–3), 19–32.CrossRef Dunjó, J., Fthenakis, V., Vílchez, J., et al. (2010). Hazard and operability (HAZOP) analysis, a literature review. Journal of Hazardous Materials, 173(1–3), 19–32.CrossRef
111.
Zurück zum Zitat Kennedy, R., & Kirwan, B. (1998). Development of a hazard and operability-based method for identifying safety management vulnerabilities in high risk systems. Safety Science, 30(3), 249–274.CrossRef Kennedy, R., & Kirwan, B. (1998). Development of a hazard and operability-based method for identifying safety management vulnerabilities in high risk systems. Safety Science, 30(3), 249–274.CrossRef
112.
Zurück zum Zitat Rausand, M. (2013). Risk assessment: theory, methods, and applications. Hoboken, New Jersey: Wiley.MATH Rausand, M. (2013). Risk assessment: theory, methods, and applications. Hoboken, New Jersey: Wiley.MATH
113.
Zurück zum Zitat Banerjee, A., Venkatasubramanian, K. K., Mukherjee, T., & Gupta, S. K. S. (2012). Ensuring safety, security, and sustainability of mission-critical cyber-physical systems. Proceedings of the IEEE, 100(1), 283–299.CrossRef Banerjee, A., Venkatasubramanian, K. K., Mukherjee, T., & Gupta, S. K. S. (2012). Ensuring safety, security, and sustainability of mission-critical cyber-physical systems. Proceedings of the IEEE, 100(1), 283–299.CrossRef
114.
Zurück zum Zitat Modarres, M., & Cheon, S. (1999). Function-centered modeling of engineering systems using the goal tree-success tree technique and functional primitives. Reliability Engineering and System Safety, 64(2), 181–200.CrossRef Modarres, M., & Cheon, S. (1999). Function-centered modeling of engineering systems using the goal tree-success tree technique and functional primitives. Reliability Engineering and System Safety, 64(2), 181–200.CrossRef
115.
Zurück zum Zitat Brissaud, F., Barros, A., & Bérenguer, C. et al. (2009). “Reliability study of an intelligent transmitter,” In Proceedings of 15th ISSAT international conference reliability and quality in design, San Francisco, United States, pp. 224–233. Brissaud, F., Barros, A., & Bérenguer, C. et al. (2009). “Reliability study of an intelligent transmitter,” In Proceedings of 15th ISSAT international conference reliability and quality in design, San Francisco, United States, pp. 224–233.
116.
Zurück zum Zitat Lee, D., Lee, J., & Cheon, S. et al. (2013). “Application of system-theoretic process analysis to engineered safety features-component control system,” In Proceedings of 37th enlarged halden programme group (EHPG) meeting, Storefjell, Norway. Lee, D., Lee, J., & Cheon, S. et al. (2013). “Application of system-theoretic process analysis to engineered safety features-component control system,” In Proceedings of 37th enlarged halden programme group (EHPG) meeting, Storefjell, Norway.
117.
Zurück zum Zitat Sterbenz, J. P., Hutchison, D., Çetinkaya, E. K., Jabbar, A., Rohrer, J. P., Schöller, M., & Smith, P. (2010). Resilience and survivability in communication networks: Strategies, principles, and survey of disciplines. Computer Networks, 54(8), 1245–1265. (Resilient and Survivable networks.).MATHCrossRef Sterbenz, J. P., Hutchison, D., Çetinkaya, E. K., Jabbar, A., Rohrer, J. P., Schöller, M., & Smith, P. (2010). Resilience and survivability in communication networks: Strategies, principles, and survey of disciplines. Computer Networks, 54(8), 1245–1265. (Resilient and Survivable networks.).MATHCrossRef
118.
Zurück zum Zitat Mohanta, D. K., Cherukuri, M., & Roy, D. S. (2016). A brief review of phasor measurement units as sensors for smart grid. Electric Power Components & Systems, 44(4), 411–425.CrossRef Mohanta, D. K., Cherukuri, M., & Roy, D. S. (2016). A brief review of phasor measurement units as sensors for smart grid. Electric Power Components & Systems, 44(4), 411–425.CrossRef
119.
Zurück zum Zitat Liu, W., Liu, N., Fan, Y., Zhang, L., & Zhang, x. (2009).“Reliability analysis of wide area measurement system based on the centralized distributed model,” In 2009 IEEE/PES power systems conference and exposition, pp. 1–6. Liu, W., Liu, N., Fan, Y., Zhang, L., & Zhang, x. (2009).“Reliability analysis of wide area measurement system based on the centralized distributed model,” In 2009 IEEE/PES power systems conference and exposition, pp. 1–6.
120.
Zurück zum Zitat Zhao, X., Lu, J., Wang, Y., Peng, J., He, F., & Wei, H. (2009). Reliability assessment of wams based on a combined hardware and software probability model of phasor measurement units. Dianli Xitong Zidonghua Automation of Electric Power Systems, 33(16), 19–23. Zhao, X., Lu, J., Wang, Y., Peng, J., He, F., & Wei, H. (2009). Reliability assessment of wams based on a combined hardware and software probability model of phasor measurement units. Dianli Xitong Zidonghua Automation of Electric Power Systems, 33(16), 19–23.
121.
Zurück zum Zitat Goutard, E., Rudolph, T., & Mesbah, M. (2010). “Impact of communication network impairments on wide area monitoring, control and protection applications in the IEC61850 environment,” In Proceedings of 43rd international conference on large high voltage electric systems 2010, CIGRE 2010. Goutard, E., Rudolph, T., & Mesbah, M. (2010). “Impact of communication network impairments on wide area monitoring, control and protection applications in the IEC61850 environment,” In Proceedings of 43rd international conference on large high voltage electric systems 2010, CIGRE 2010.
122.
Zurück zum Zitat Asprou, M., Hadjiantonis, A. M., Ciornei, I., Milis, G., & Kyriakides, E. (2012). “On the complexities of interdependent infrastructures for wide area monitoring systems,” In 2012 complexity in engineering (COMPENG). proceedings, pp. 1–6. Asprou, M., Hadjiantonis, A. M., Ciornei, I., Milis, G., & Kyriakides, E. (2012). “On the complexities of interdependent infrastructures for wide area monitoring systems,” In 2012 complexity in engineering (COMPENG). proceedings, pp. 1–6.
123.
Zurück zum Zitat Menike, S., Yahampath, P., Rajapakse, A., & Alfa, A. (2013). Queuing-theoretic modeling of a pmu communication network. IEEE Power Energy Society General Meeting, 2013, 1–5. Menike, S., Yahampath, P., Rajapakse, A., & Alfa, A. (2013). Queuing-theoretic modeling of a pmu communication network. IEEE Power Energy Society General Meeting, 2013, 1–5.
124.
Zurück zum Zitat Rana, A. S., Thomas, M. S., & Senroy, N. (2017). Reliability evaluation of wams using markov-based graph theory approach. IET Generation, Transmission Distribution, 11(11), 2930–2937.CrossRef Rana, A. S., Thomas, M. S., & Senroy, N. (2017). Reliability evaluation of wams using markov-based graph theory approach. IET Generation, Transmission Distribution, 11(11), 2930–2937.CrossRef
125.
Zurück zum Zitat Li, J., Zhang, A., Zhang, H., Liu, X., Geng, Y., & Wei, Y. (2015). Reliability evaluation of the wide area protect system. Diangong Jishu Xuebao Transactions of China Electrotechnical Society, 30(12), 344–350. Li, J., Zhang, A., Zhang, H., Liu, X., Geng, Y., & Wei, Y. (2015). Reliability evaluation of the wide area protect system. Diangong Jishu Xuebao Transactions of China Electrotechnical Society, 30(12), 344–350.
126.
Zurück zum Zitat Sodhi, R., & Sharieff, M. I. (2015). Phasor measurement unit placement framework for enhanced wide-area situational awareness. IET Generation, Transmission Distribution, 9(2), 172–182.CrossRef Sodhi, R., & Sharieff, M. I. (2015). Phasor measurement unit placement framework for enhanced wide-area situational awareness. IET Generation, Transmission Distribution, 9(2), 172–182.CrossRef
127.
Zurück zum Zitat Castello, P., Ferrari, P., Flammini, A., Muscas, C., Pegoraro, P. A., & Rinaldi, S. (2015). A distributed pmu for electrical substations with wireless redundant process bus. IEEE Transactions on Instrumentation and Measurement, 64(5), 1149–1157.CrossRef Castello, P., Ferrari, P., Flammini, A., Muscas, C., Pegoraro, P. A., & Rinaldi, S. (2015). A distributed pmu for electrical substations with wireless redundant process bus. IEEE Transactions on Instrumentation and Measurement, 64(5), 1149–1157.CrossRef
128.
Zurück zum Zitat Sterbenz, J., Cetinkaya, E. K., Hameed, M., Jabbar, A., Qian, S., & Rohrer, J. (2013). Evaluation of network resilience, survivability, and disruption tolerance: analysis, topology generation, simulation, and experimentation. Telecommunication Systems, 52(2), 705–736. Sterbenz, J., Cetinkaya, E. K., Hameed, M., Jabbar, A., Qian, S., & Rohrer, J. (2013). Evaluation of network resilience, survivability, and disruption tolerance: analysis, topology generation, simulation, and experimentation. Telecommunication Systems, 52(2), 705–736.
129.
Zurück zum Zitat Rak, J. (2015). Principles of communication networks resilience. In Resilient routing in communication networks. computer communications and networks, Springer, Cham. Rak, J. (2015). Principles of communication networks resilience. In Resilient routing in communication networks. computer communications and networks, Springer, Cham.
Metadaten
Titel
Smart grid cyber-physical systems: communication technologies, standards and challenges
verfasst von
A. V. Jha
B. Appasani
A. N. Ghazali
P. Pattanayak
D. S. Gurjar
E. Kabalci
D. K. Mohanta
Publikationsdatum
30.03.2021
Verlag
Springer US
Erschienen in
Wireless Networks / Ausgabe 4/2021
Print ISSN: 1022-0038
Elektronische ISSN: 1572-8196
DOI
https://doi.org/10.1007/s11276-021-02579-1

Weitere Artikel der Ausgabe 4/2021

Wireless Networks 4/2021 Zur Ausgabe

Neuer Inhalt