Skip to main content
Erschienen in: Wireless Networks 1/2022

06.11.2021 | Original Paper

An energy-aware clustering method in the IoT using a swarm-based algorithm

verfasst von: Mahyar Sadrishojaei, Nima Jafari Navimipour, Midia Reshadi, Mehdi Hosseinzadeh, Mehmet Unal

Erschienen in: Wireless Networks | Ausgabe 1/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Internet of Things (IoT) is a set of interrelated devices on the Internet platform. It can receive and send data to make human life more efficient and convenient. The main challenge in the IoT network is energy consumption in nodes. Clustering is a proper data collection method in the IoT that selectively reduces energy consumption by forming IoT nodes into clusters. The Cluster Head (CH) can control all Cluster Member (CM) nodes, and all intra-cluster and inter-cluster connections are made through it. Today, metaheuristic algorithms solve many problems, including clustering, because they have good performance and are noticeable practical effects. This paper uses the artificial fish swarm algorithm, an effective algorithm to solve optimization problems based on imitation of fish behavior. The cost function contains the residual energy of the nodes, the sum of the distances, and the degree of each node. The simulation results on the dataset showed that the proposed method increases network lifetime value by at least 12.5% and reduces latency by at least 14%.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Xiao, N., et al. (2021). A diversity-based selfish node detection algorithm for socially aware networking. Journal of Signal Processing Systems, 93(7), 811–825.CrossRef Xiao, N., et al. (2021). A diversity-based selfish node detection algorithm for socially aware networking. Journal of Signal Processing Systems, 93(7), 811–825.CrossRef
2.
Zurück zum Zitat Lv, Z., Qiao, L., Li, J., & Song, H. (2020). Deep-learning-enabled security issues in the internet of things. IEEE Internet of Things Journal, 8(12), 9531–9538.CrossRef Lv, Z., Qiao, L., Li, J., & Song, H. (2020). Deep-learning-enabled security issues in the internet of things. IEEE Internet of Things Journal, 8(12), 9531–9538.CrossRef
3.
Zurück zum Zitat Lv, Z., Lou, R., Li, J., Singh, A. K., & Song, H. (2021). Big data analytics for 6G-enabled massive internet of things. IEEE Internet of Things Journal, 8(7), 5350–5359.CrossRef Lv, Z., Lou, R., Li, J., Singh, A. K., & Song, H. (2021). Big data analytics for 6G-enabled massive internet of things. IEEE Internet of Things Journal, 8(7), 5350–5359.CrossRef
4.
Zurück zum Zitat Sefati, S., & Navimipour, J. N. (2022). A QoS-aware service composition mechanism in the Internet of things using a hidden Markov model-based optimization algorithm. IEEE Internet of Things Journal, 8, 15620–15627.CrossRef Sefati, S., & Navimipour, J. N. (2022). A QoS-aware service composition mechanism in the Internet of things using a hidden Markov model-based optimization algorithm. IEEE Internet of Things Journal, 8, 15620–15627.CrossRef
5.
Zurück zum Zitat Zhang, J., Shen, C., Su, H., Arafin, M. T., and Qu, G. (2021). Voltage over-scaling-based lightweight authentication for IoT security. IEEE Transactions on Computers. Zhang, J., Shen, C., Su, H., Arafin, M. T., and Qu, G. (2021). Voltage over-scaling-based lightweight authentication for IoT security. IEEE Transactions on Computers.
6.
Zurück zum Zitat Cai, K., Chen, H., Ai, W., Miao, X., Lin, Q., & Feng, Q. (2021). Feedback convolutional network for intelligent data fusion based on near-infrared collaborative IoT technology. IEEE Transactions on Industrial Informatics, 18, 1200–1209.CrossRef Cai, K., Chen, H., Ai, W., Miao, X., Lin, Q., & Feng, Q. (2021). Feedback convolutional network for intelligent data fusion based on near-infrared collaborative IoT technology. IEEE Transactions on Industrial Informatics, 18, 1200–1209.CrossRef
7.
Zurück zum Zitat Li, B., Liang, R., Zhou, W., Yin, H., Gao, H., and Cai, K. (2021). LBS meets blockchain: an efficient method with security preserving trust in SAGIN. IEEE Internet of Things Journal. Li, B., Liang, R., Zhou, W., Yin, H., Gao, H., and Cai, K. (2021). LBS meets blockchain: an efficient method with security preserving trust in SAGIN. IEEE Internet of Things Journal.
8.
Zurück zum Zitat Lv, Z., Qiao, L., & Song, H. (2020). Analysis of the security of internet of multimedia things. ACM Transactions on Multimedia Computing, Communications, and Applications (ToMM), 16(3), 1–16.CrossRef Lv, Z., Qiao, L., & Song, H. (2020). Analysis of the security of internet of multimedia things. ACM Transactions on Multimedia Computing, Communications, and Applications (ToMM), 16(3), 1–16.CrossRef
9.
Zurück zum Zitat Weng, L., He, Y., Peng, J., Zheng, J., & Li, X. (2021). Deep cascading network architecture for robust automatic modulation classification. Neurocomputing, 455, 308–324.CrossRef Weng, L., He, Y., Peng, J., Zheng, J., & Li, X. (2021). Deep cascading network architecture for robust automatic modulation classification. Neurocomputing, 455, 308–324.CrossRef
10.
Zurück zum Zitat Yi, H. (2021) Secure social internet of things based on post-quantum blockchain. IEEE Transactions on Network Science and Engineering. Yi, H. (2021) Secure social internet of things based on post-quantum blockchain. IEEE Transactions on Network Science and Engineering.
11.
Zurück zum Zitat Qadri, Y. A., Nauman, A., Zikria, Y. B., Vasilakos, A. V., & Kim, S. W. (2020). The future of healthcare internet of things: A survey of emerging technologies. IEEE Communications Surveys & Tutorials, 22(2), 1121–1167.CrossRef Qadri, Y. A., Nauman, A., Zikria, Y. B., Vasilakos, A. V., & Kim, S. W. (2020). The future of healthcare internet of things: A survey of emerging technologies. IEEE Communications Surveys & Tutorials, 22(2), 1121–1167.CrossRef
12.
Zurück zum Zitat Hajiheidari, S., Wakil, K., Badri, M., & Navimipour, N. J. (2019). Intrusion detection systems in the Internet of things: A comprehensive investigation. Computer Networks, 160, 165–191.CrossRef Hajiheidari, S., Wakil, K., Badri, M., & Navimipour, N. J. (2019). Intrusion detection systems in the Internet of things: A comprehensive investigation. Computer Networks, 160, 165–191.CrossRef
13.
Zurück zum Zitat Sadrishojaei, M., Jafari Navimipour, N., Reshadi, M., and Hosseinzadeh, M. Clustered routing method in the internet of things using a moth-flame optimization algorithm. International Journal of Communication Systems, e4964. Sadrishojaei, M., Jafari Navimipour, N., Reshadi, M., and Hosseinzadeh, M. Clustered routing method in the internet of things using a moth-flame optimization algorithm. International Journal of Communication Systems, e4964.
14.
Zurück zum Zitat Mansoor, K., Ghani, A., Chaudhry, S. A., Shamshirband, S., Ghayyur, S. A. K., and Mosavi, A. (2019). Securing IoT-based RFID systems: A robust authentication protocol using symmetric cryptography. Sensors (Switzerland) 19(21), Art. no. 4752. Mansoor, K., Ghani, A., Chaudhry, S. A., Shamshirband, S., Ghayyur, S. A. K., and Mosavi, A. (2019). Securing IoT-based RFID systems: A robust authentication protocol using symmetric cryptography. Sensors (Switzerland) 19(21), Art. no. 4752.
15.
Zurück zum Zitat Sarkeshikian, A., Shafia, M., Zakery, A., and Aliahmadi, A. J. K. (2020). Simulation of stakeholders’ consensus on organizational technology acceptance (case study: Internet of Things). Kybernetes. Sarkeshikian, A., Shafia, M., Zakery, A., and Aliahmadi, A. J. K. (2020). Simulation of stakeholders’ consensus on organizational technology acceptance (case study: Internet of Things). Kybernetes.
16.
Zurück zum Zitat Hamzei, M., & Navimipour, N. J. (2018). Toward efficient service composition techniques in the internet of things. IEEE Internet of Things Journal, 5(5), 3774–3787.CrossRef Hamzei, M., & Navimipour, N. J. (2018). Toward efficient service composition techniques in the internet of things. IEEE Internet of Things Journal, 5(5), 3774–3787.CrossRef
17.
Zurück zum Zitat Ghanbari, Z., Navimipour, N. J., Hosseinzadeh, M., & Darwesh, A. (2019). Resource allocation mechanisms and approaches on the Internet of Things. Cluster Computing, 22(4), 1253–1282.CrossRef Ghanbari, Z., Navimipour, N. J., Hosseinzadeh, M., & Darwesh, A. (2019). Resource allocation mechanisms and approaches on the Internet of Things. Cluster Computing, 22(4), 1253–1282.CrossRef
18.
Zurück zum Zitat Rad, H. J., Abolhassani, B., & Abdizadeh, M. Mathematical analysis of optimal tracking interval management for power efficient target tracking wireless sensor networks. Rad, H. J., Abolhassani, B., & Abdizadeh, M. Mathematical analysis of optimal tracking interval management for power efficient target tracking wireless sensor networks.
19.
Zurück zum Zitat Sadrishojaei, M., et al. (2021). A new clustering-based routing method in the mobile internet of things using a krill herd algorithm. Cluster Computing, 1–11. Sadrishojaei, M., et al. (2021). A new clustering-based routing method in the mobile internet of things using a krill herd algorithm. Cluster Computing, 1–11.
20.
Zurück zum Zitat Choudhury, N., Matam, R., Mukherjee, M., Lloret, J., and Kalaimannan, E. (2020). NCHR: A Non-threshold-based cluster-head rotation scheme for IEEE 802.15. 4 Cluster-tree Networks. IEEE Internet of Things Journal. 1–6. Choudhury, N., Matam, R., Mukherjee, M., Lloret, J., and Kalaimannan, E. (2020). NCHR: A Non-threshold-based cluster-head rotation scheme for IEEE 802.15. 4 Cluster-tree Networks. IEEE Internet of Things Journal. 1–6.
21.
Zurück zum Zitat Amirinasab, M., Shamshirband, S., Chronopoulos, A. T., Mosavi, A., and Nabipour, N. (2020). Energy-efficient method for wireless sensor networks low-power radio operation in internet of things. (in English). Electronics (Switzerland), 9(2), Art. no. 320. Amirinasab, M., Shamshirband, S., Chronopoulos, A. T., Mosavi, A., and Nabipour, N. (2020). Energy-efficient method for wireless sensor networks low-power radio operation in internet of things. (in English). Electronics (Switzerland), 9(2), Art. no. 320.
22.
Zurück zum Zitat Hady, A. A. (2020). Duty cycling centralized hierarchical routing protocol with content analysis duty cycling mechanism for wireless sensor networks. Computer Systems Science And Engineering, 35(5), 347–355.CrossRef Hady, A. A. (2020). Duty cycling centralized hierarchical routing protocol with content analysis duty cycling mechanism for wireless sensor networks. Computer Systems Science And Engineering, 35(5), 347–355.CrossRef
23.
Zurück zum Zitat Sadrishojaei, M., Navimipour, N. J., Reshadi, M., & Hosseinzadeh, M. (2021). A New Preventive Routing Method Based on Clustering and Location Prediction in the Mobile Internet of Things. IEEE Internet of Things Journal, 8, 10652–10664.CrossRef Sadrishojaei, M., Navimipour, N. J., Reshadi, M., & Hosseinzadeh, M. (2021). A New Preventive Routing Method Based on Clustering and Location Prediction in the Mobile Internet of Things. IEEE Internet of Things Journal, 8, 10652–10664.CrossRef
24.
Zurück zum Zitat Latiff, N. A., Tsimenidis, C. C, and Sharif, B. S. (2007). Energy-aware clustering for wireless sensor networks using particle swarm optimization. In 2007 IEEE 18th international symposium on personal, indoor and mobile radio communications, pp. 1–5: IEEE. Latiff, N. A., Tsimenidis, C. C, and Sharif, B. S. (2007). Energy-aware clustering for wireless sensor networks using particle swarm optimization. In 2007 IEEE 18th international symposium on personal, indoor and mobile radio communications, pp. 1–5: IEEE.
25.
Zurück zum Zitat Aslani, R., & Rasti, M. (2020). A distributed power control algorithm for energy efficiency maximization in wireless cellular networks. IEEE Wireless Communications Letters, 9(11), 1975–1979.CrossRef Aslani, R., & Rasti, M. (2020). A distributed power control algorithm for energy efficiency maximization in wireless cellular networks. IEEE Wireless Communications Letters, 9(11), 1975–1979.CrossRef
26.
Zurück zum Zitat Ni, T., Liu, D., Xu, Q., Huang, Z., Liang, H., & Yan, A. (2020). Architecture of cobweb-based redundant TSV for clustered faults. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 28(7), 1736–1739.CrossRef Ni, T., Liu, D., Xu, Q., Huang, Z., Liang, H., & Yan, A. (2020). Architecture of cobweb-based redundant TSV for clustered faults. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 28(7), 1736–1739.CrossRef
27.
Zurück zum Zitat Rajaram, V., and Kumaratharan, N. (2020). An optimized clustering using hybrid meta-heuristic approach for wireless sensor networks. International Journal of Communication Systems, 33(18). Rajaram, V., and Kumaratharan, N. (2020). An optimized clustering using hybrid meta-heuristic approach for wireless sensor networks. International Journal of Communication Systems, 33(18).
28.
Zurück zum Zitat Rani, S., and Ahmed, S. H. (2015). Multi-hop routing in wireless sensor networks: An overview, taxonomy, and research challenges. Rani, S., and Ahmed, S. H. (2015). Multi-hop routing in wireless sensor networks: An overview, taxonomy, and research challenges.
29.
Zurück zum Zitat Hu, L., Hong, G., Ma, J., Wang, X., & Chen, H. (2015). An efficient machine learning approach for diagnosis of paraquat-poisoned patients. Computers in Biology and Medicine, 59, 116–124.CrossRef Hu, L., Hong, G., Ma, J., Wang, X., & Chen, H. (2015). An efficient machine learning approach for diagnosis of paraquat-poisoned patients. Computers in Biology and Medicine, 59, 116–124.CrossRef
30.
Zurück zum Zitat Wang, M., et al. (2017). Toward an optimal kernel extreme learning machine using a chaotic moth-flame optimization strategy with applications in medical diagnoses. Neurocomputing, 267, 69–84.CrossRef Wang, M., et al. (2017). Toward an optimal kernel extreme learning machine using a chaotic moth-flame optimization strategy with applications in medical diagnoses. Neurocomputing, 267, 69–84.CrossRef
31.
Zurück zum Zitat Zhang, Y. and Wang, Y. (2020) A novel energy-aware bio-inspired clustering scheme for IoT communication. Journal of Ambient Intelligence and Humanized Computing, pp. 1–10. Zhang, Y. and Wang, Y. (2020) A novel energy-aware bio-inspired clustering scheme for IoT communication. Journal of Ambient Intelligence and Humanized Computing, pp. 1–10.
32.
Zurück zum Zitat Neshat, M., Adeli, A., Sepidnam, G., Sargolzaei, V., and Toosi, A. N. (2017). A review of artificial fish swarm optimization methods and applications. International Journal on Smart Sensing and Intelligent Systems, 5(1). Neshat, M., Adeli, A., Sepidnam, G., Sargolzaei, V., and Toosi, A. N. (2017). A review of artificial fish swarm optimization methods and applications. International Journal on Smart Sensing and Intelligent Systems, 5(1).
33.
Zurück zum Zitat Reddy, M. P. K., & Babu, M. R. (2019). A hybrid cluster head selection model for Internet of Things. Cluster Computing, 22(6), 13095–13107. Reddy, M. P. K., & Babu, M. R. (2019). A hybrid cluster head selection model for Internet of Things. Cluster Computing, 22(6), 13095–13107.
34.
Zurück zum Zitat Hriez, S., Almajali, S., Elgala, H., Ayyash, M., and Salameh, H. B. (2021). A novel trust-aware and energy-aware clustering method that uses stochastic fractal search in IoT-enabled wireless sensor networks. IEEE Systems Journal, 1–12. Hriez, S., Almajali, S., Elgala, H., Ayyash, M., and Salameh, H. B. (2021). A novel trust-aware and energy-aware clustering method that uses stochastic fractal search in IoT-enabled wireless sensor networks. IEEE Systems Journal, 1–12.
35.
Zurück zum Zitat Shukla, A., and Tripathi, S. (2020). A multi-tier based clustering framework for scalable and energy efficient WSN-assisted IoT network. Wireless Networks, pp. 1–23. Shukla, A., and Tripathi, S. (2020). A multi-tier based clustering framework for scalable and energy efficient WSN-assisted IoT network. Wireless Networks, pp. 1–23.
36.
Zurück zum Zitat Aziz, A., Osamy, W., Khedr, A. M., El-Sawy, A. A., and Singh, K. (2020). Grey Wolf based compressive sensing scheme for data gathering in IoT based heterogeneous WSNs. Wireless Networks, pp. 1–24. Aziz, A., Osamy, W., Khedr, A. M., El-Sawy, A. A., and Singh, K. (2020). Grey Wolf based compressive sensing scheme for data gathering in IoT based heterogeneous WSNs. Wireless Networks, pp. 1–24.
37.
Zurück zum Zitat Amutha, S., Kannan, B., and Kanagaraj, M.(2020). Energy‐efficient cluster manager‐based cluster head selection technique for communication networks. International Journal of Communication Systems, pp. e4741. Amutha, S., Kannan, B., and Kanagaraj, M.(2020). Energy‐efficient cluster manager‐based cluster head selection technique for communication networks. International Journal of Communication Systems, pp. e4741.
38.
Zurück zum Zitat Thangaramya, K., Kulothungan, K., Logambigai, R., Selvi, M., Ganapathy, S., & Kannan, A. (2019). Energy aware cluster and neuro-fuzzy based routing algorithm for wireless sensor networks in IoT. Computer Networks, 151, 211–223.CrossRef Thangaramya, K., Kulothungan, K., Logambigai, R., Selvi, M., Ganapathy, S., & Kannan, A. (2019). Energy aware cluster and neuro-fuzzy based routing algorithm for wireless sensor networks in IoT. Computer Networks, 151, 211–223.CrossRef
39.
Zurück zum Zitat Behera, T. M., Mohapatra, S. K., Samal, U. C., Khan, M. S., Daneshmand, M., & Gandomi, A. H. (2019). Residual energy-based cluster-head selection in WSNs for IoT application. IEEE Internet of Things Journal, 6(3), 5132–5139.CrossRef Behera, T. M., Mohapatra, S. K., Samal, U. C., Khan, M. S., Daneshmand, M., & Gandomi, A. H. (2019). Residual energy-based cluster-head selection in WSNs for IoT application. IEEE Internet of Things Journal, 6(3), 5132–5139.CrossRef
40.
Zurück zum Zitat Saini, T. K., and Sharma, S. (2019). Self-managed access scheme for demand request in TDM/TDMA Star Topology Network. Defence Science Journal, 69(1). Saini, T. K., and Sharma, S. (2019). Self-managed access scheme for demand request in TDM/TDMA Star Topology Network. Defence Science Journal, 69(1).
41.
Zurück zum Zitat Roshani, M., et al. (2020). Application of GMDH neural network technique to improve measuring precision of a simplified photon attenuation based two-phase flowmeter. Journal of Flow Measurement and Instrumentation, 75, 101804.CrossRef Roshani, M., et al. (2020). Application of GMDH neural network technique to improve measuring precision of a simplified photon attenuation based two-phase flowmeter. Journal of Flow Measurement and Instrumentation, 75, 101804.CrossRef
42.
Zurück zum Zitat Sattari, M. A., Roshani, G. H., Hanus, R., & Nazemi, E. (2021). Applicability of time-domain feature extraction methods and artificial intelligence in two-phase flow meters based on gamma-ray absorption technique. Measurement, 168, 108474.CrossRef Sattari, M. A., Roshani, G. H., Hanus, R., & Nazemi, E. (2021). Applicability of time-domain feature extraction methods and artificial intelligence in two-phase flow meters based on gamma-ray absorption technique. Measurement, 168, 108474.CrossRef
43.
Zurück zum Zitat Chen, H., Heidari, A. A., Chen, H., Wang, M., Pan, Z., & Gandomi, A. H. (2020). Multi-population differential evolution-assisted Harris hawks optimization: Framework and case studies. Future Generation Computer Systems, 111, 175–198.CrossRef Chen, H., Heidari, A. A., Chen, H., Wang, M., Pan, Z., & Gandomi, A. H. (2020). Multi-population differential evolution-assisted Harris hawks optimization: Framework and case studies. Future Generation Computer Systems, 111, 175–198.CrossRef
44.
Zurück zum Zitat Zhang, Y., Liu, R., Wang, X., Chen, H., and Li, C. (2020). Boosted binary Harris hawks optimizer and feature selection. Engineering with Computers, pp. 1–30. Zhang, Y., Liu, R., Wang, X., Chen, H., and Li, C. (2020). Boosted binary Harris hawks optimizer and feature selection. Engineering with Computers, pp. 1–30.
45.
Zurück zum Zitat Xu, X., & Chen, H.-L. (2014). Adaptive computational chemotaxis based on field in bacterial foraging optimization. Soft Computing, 18(4), 797–807.CrossRef Xu, X., & Chen, H.-L. (2014). Adaptive computational chemotaxis based on field in bacterial foraging optimization. Soft Computing, 18(4), 797–807.CrossRef
46.
Zurück zum Zitat Yu, C et al. (2021). SGOA: Annealing-behaved grasshopper optimizer for global tasks. Engineering with Computers, pp. 1–28. Yu, C et al. (2021). SGOA: Annealing-behaved grasshopper optimizer for global tasks. Engineering with Computers, pp. 1–28.
47.
Zurück zum Zitat Hu, J., et al. (2021). Orthogonal learning covariance matrix for defects of grey wolf optimizer: Insights, balance, diversity, and feature selection. Knowledge-Based Systems, 213, 106684.CrossRef Hu, J., et al. (2021). Orthogonal learning covariance matrix for defects of grey wolf optimizer: Insights, balance, diversity, and feature selection. Knowledge-Based Systems, 213, 106684.CrossRef
48.
Zurück zum Zitat Zhao, X., et al. (2019). Chaos enhanced grey wolf optimization wrapped ELM for diagnosis of paraquat-poisoned patients. Computational biology and chemistry, 78, 481–490.CrossRef Zhao, X., et al. (2019). Chaos enhanced grey wolf optimization wrapped ELM for diagnosis of paraquat-poisoned patients. Computational biology and chemistry, 78, 481–490.CrossRef
49.
Zurück zum Zitat Shan, W., Qiao, Z., Heidari, A. A., Chen, H., Turabieh, H., & Teng, Y. (2021). Double adaptive weights for stabilization of moth flame optimizer: Balance analysis, engineering cases, and medical diagnosis. Knowledge-Based Systems, 214, 106728.CrossRef Shan, W., Qiao, Z., Heidari, A. A., Chen, H., Turabieh, H., & Teng, Y. (2021). Double adaptive weights for stabilization of moth flame optimizer: Balance analysis, engineering cases, and medical diagnosis. Knowledge-Based Systems, 214, 106728.CrossRef
50.
Zurück zum Zitat Xu, Y., Chen, H., Luo, J., Zhang, Q., Jiao, S., & Zhang, X. (2019). Enhanced Moth-flame optimizer with mutation strategy for global optimization. Information Sciences, 492, 181–203.MathSciNetCrossRef Xu, Y., Chen, H., Luo, J., Zhang, Q., Jiao, S., & Zhang, X. (2019). Enhanced Moth-flame optimizer with mutation strategy for global optimization. Information Sciences, 492, 181–203.MathSciNetCrossRef
51.
Zurück zum Zitat Shen, L., et al. (2016). Evolving support vector machines using fruit fly optimization for medical data classification. Knowledge-Based Systems, 96, 61–75.CrossRef Shen, L., et al. (2016). Evolving support vector machines using fruit fly optimization for medical data classification. Knowledge-Based Systems, 96, 61–75.CrossRef
52.
Zurück zum Zitat Yu, H et al. (2020). Dynamic Gaussian bare-bones fruit fly optimizers with abandonment mechanism: method and analysis. Engineering with Computers, pp. 1–29. Yu, H et al. (2020). Dynamic Gaussian bare-bones fruit fly optimizers with abandonment mechanism: method and analysis. Engineering with Computers, pp. 1–29.
53.
Zurück zum Zitat Sun, G., Li, C., and Deng, L. (2021). An adaptive regeneration framework based on search space adjustment for differential evolution. Neural Computing and Applications, pp. 1–17. Sun, G., Li, C., and Deng, L. (2021). An adaptive regeneration framework based on search space adjustment for differential evolution. Neural Computing and Applications, pp. 1–17.
54.
Zurück zum Zitat Tu, J., et al. (2021). Evolutionary biogeography-based whale optimization methods with communication structure: Towards measuring the balance. Knowledge-Based Systems, 212, 106642.CrossRef Tu, J., et al. (2021). Evolutionary biogeography-based whale optimization methods with communication structure: Towards measuring the balance. Knowledge-Based Systems, 212, 106642.CrossRef
55.
Zurück zum Zitat Wang, M., & Chen, H. (2020). Chaotic multi-swarm whale optimizer boosted support vector machine for medical diagnosis. Applied Soft Computing, 88, 105946.CrossRef Wang, M., & Chen, H. (2020). Chaotic multi-swarm whale optimizer boosted support vector machine for medical diagnosis. Applied Soft Computing, 88, 105946.CrossRef
56.
Zurück zum Zitat Zhong, S.-Q., Zhao, S.-C., & Zhu, S.-N. (2021). Photovoltaic properties enhanced by the tunneling effect in a coupled quantum dot photocell. Results in Physics, 24, 104094.CrossRef Zhong, S.-Q., Zhao, S.-C., & Zhu, S.-N. (2021). Photovoltaic properties enhanced by the tunneling effect in a coupled quantum dot photocell. Results in Physics, 24, 104094.CrossRef
57.
Zurück zum Zitat Zhao, X., Li, D., Yang, B., Ma, C., Zhu, Y., & Chen, H. (2014). Feature selection based on improved ant colony optimization for online detection of foreign fiber in cotton. Applied Soft Computing, 24, 585–596.CrossRef Zhao, X., Li, D., Yang, B., Ma, C., Zhu, Y., & Chen, H. (2014). Feature selection based on improved ant colony optimization for online detection of foreign fiber in cotton. Applied Soft Computing, 24, 585–596.CrossRef
58.
Zurück zum Zitat Li, X.-L. (2002). An optimizing method based on autonomous animats: Fish-swarm algorithm. Systems Engineering-Theory & Practice, 22(11), 32–38. Li, X.-L. (2002). An optimizing method based on autonomous animats: Fish-swarm algorithm. Systems Engineering-Theory & Practice, 22(11), 32–38.
59.
Zurück zum Zitat Neshat, M., Sepidnam, G., Sargolzaei, M., & Toosi, A. N. (2014). Artificial fish swarm algorithm: A survey of the state-of-the-art, hybridization, combinatorial and indicative applications. Artificial intelligence review, 42(4), 965–997.CrossRef Neshat, M., Sepidnam, G., Sargolzaei, M., & Toosi, A. N. (2014). Artificial fish swarm algorithm: A survey of the state-of-the-art, hybridization, combinatorial and indicative applications. Artificial intelligence review, 42(4), 965–997.CrossRef
60.
Zurück zum Zitat Gorgich, S., and Tabatabaei, S. (2021). Proposing an energy-aware routing protocol by using fish swarm optimization algorithm in WSN (Wireless Sensor Networks). Wireless Personal Communications, pp. 1–21. Gorgich, S., and Tabatabaei, S. (2021). Proposing an energy-aware routing protocol by using fish swarm optimization algorithm in WSN (Wireless Sensor Networks). Wireless Personal Communications, pp. 1–21.
61.
Zurück zum Zitat Li, X., Keegan, B., & Mtenzi, F. (2018). Energy efficient hybrid routing protocol based on the artificial fish swarm algorithm and ant colony optimisation for WSNs. Sensors, 18(10), 3351.CrossRef Li, X., Keegan, B., & Mtenzi, F. (2018). Energy efficient hybrid routing protocol based on the artificial fish swarm algorithm and ant colony optimisation for WSNs. Sensors, 18(10), 3351.CrossRef
62.
Zurück zum Zitat Mechta, D., Harous, S. (2019). Clustering in WSNs based on Artificial Fish Swarming Algorithm. In 2019 15th International Wireless Communications & Mobile Computing Conference (IWCMC), pp. 161–167: IEEE. Mechta, D., Harous, S. (2019). Clustering in WSNs based on Artificial Fish Swarming Algorithm. In 2019 15th International Wireless Communications & Mobile Computing Conference (IWCMC), pp. 161–167: IEEE.
63.
Zurück zum Zitat Zainal, N., Zain, A. M., & Sharif, S. (2015). Overview of artificial fish swarm algorithm and its applications in industrial problems. Applied Mechanics and Materials, 815, 253–257.CrossRef Zainal, N., Zain, A. M., & Sharif, S. (2015). Overview of artificial fish swarm algorithm and its applications in industrial problems. Applied Mechanics and Materials, 815, 253–257.CrossRef
64.
Zurück zum Zitat Rao, P. S., Jana, P. K., & Banka, H. (2017). A particle swarm optimization based energy efficient cluster head selection algorithm for wireless sensor networks. Wireless networks, 23(7), 2005–2020.CrossRef Rao, P. S., Jana, P. K., & Banka, H. (2017). A particle swarm optimization based energy efficient cluster head selection algorithm for wireless sensor networks. Wireless networks, 23(7), 2005–2020.CrossRef
65.
Zurück zum Zitat Reddy, M. P. K., & Babu, M. R. (2019). Implementing self adaptiveness in whale optimization for cluster head section in Internet of Things. Cluster Computing, 22(1), 1361–1372.CrossRef Reddy, M. P. K., & Babu, M. R. (2019). Implementing self adaptiveness in whale optimization for cluster head section in Internet of Things. Cluster Computing, 22(1), 1361–1372.CrossRef
66.
Zurück zum Zitat Bounceur, A. et al. (2018). Cupcarbon-lab: An iot emulator. In 2018 15th IEEE Annual Consumer Communications & Networking Conference (CCNC), pp. 1–2: IEEE. Bounceur, A. et al. (2018). Cupcarbon-lab: An iot emulator. In 2018 15th IEEE Annual Consumer Communications & Networking Conference (CCNC), pp. 1–2: IEEE.
67.
Zurück zum Zitat Bounceur, A. (2016). CupCarbon: a new platform for designing and simulating smart-city and IoT wireless sensor networks (SCI-WSN). In Proceedings of the International Conference on Internet of things and Cloud Computing, pp. 1–1. Bounceur, A. (2016). CupCarbon: a new platform for designing and simulating smart-city and IoT wireless sensor networks (SCI-WSN). In Proceedings of the International Conference on Internet of things and Cloud Computing, pp. 1–1.
68.
Zurück zum Zitat Sun, G., Cong, Y., Dong, J., Liu, Y., Ding, Z., and Yu, H. (2021). What and How: Generalized lifelong spectral clustering via dual memory. IEEE Transactions on Pattern Analysis and Machine Intelligence. Sun, G., Cong, Y., Dong, J., Liu, Y., Ding, Z., and Yu, H. (2021). What and How: Generalized lifelong spectral clustering via dual memory. IEEE Transactions on Pattern Analysis and Machine Intelligence.
69.
Zurück zum Zitat Sun, G., Cong, Y., Wang, Q., Zhong, B., and Fu, Y. (2020). Representative task self-selection for flexible clustered lifelong learning. IEEE Transactions on Neural Networks and Learning Systems, 1–15. Sun, G., Cong, Y., Wang, Q., Zhong, B., and Fu, Y. (2020). Representative task self-selection for flexible clustered lifelong learning. IEEE Transactions on Neural Networks and Learning Systems, 1–15.
70.
Zurück zum Zitat Osamy, W., El-Sawy, A. A., & Salim, A. (2020). CSOCA: Chicken swarm optimization based clustering algorithm for wireless sensor networks. IEEE Access, 8, 60676–60688.CrossRef Osamy, W., El-Sawy, A. A., & Salim, A. (2020). CSOCA: Chicken swarm optimization based clustering algorithm for wireless sensor networks. IEEE Access, 8, 60676–60688.CrossRef
Metadaten
Titel
An energy-aware clustering method in the IoT using a swarm-based algorithm
verfasst von
Mahyar Sadrishojaei
Nima Jafari Navimipour
Midia Reshadi
Mehdi Hosseinzadeh
Mehmet Unal
Publikationsdatum
06.11.2021
Verlag
Springer US
Erschienen in
Wireless Networks / Ausgabe 1/2022
Print ISSN: 1022-0038
Elektronische ISSN: 1572-8196
DOI
https://doi.org/10.1007/s11276-021-02804-x

Weitere Artikel der Ausgabe 1/2022

Wireless Networks 1/2022 Zur Ausgabe

Neuer Inhalt