Skip to main content
Erschienen in: Wireless Personal Communications 3/2016

01.08.2016

Image Selection Algorithm Proposal for Digital Radiography Training Simulator

verfasst von: Joon Koo Choi, Ki Bong Kim, Gha Jung Kim

Erschienen in: Wireless Personal Communications | Ausgabe 3/2016

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Students who are learning medical radiology undergo practical training on radiography in university labs or hospitals. However, when using radiation exposure and anthropomorphic phantom which concern the use of actual X-ray apparatus, the benefits of practical training can be limited due to difficulties in employing a variety of patient positions. This study will propose the implementation method of simulator in order to develop an unprecedented radiography training simulator. The study seeks to improve the quality of practical training by proposing a method for acquiring the image which will be used as a database in the simulator, as well as a method for creating an algorithm so that concerns of radiation exposure by students can be addressed, and limitations of practical training using anthropomorphic phantom can be eased. In the field of digital radiography, a simulation method that allows for examination procedures and images that are equal to those from an actual X-ray examination but without the exposure of X-rays is proposed. A suggestion is made on the method for creating an algorithm that uses images according to the changes in dose and size of images which are then used as part of a database in the radiography training simulator. A programming method that can bring corresponding images from images which were databased according to the examination procedures was proposed. In addition, a service or interchange of sustainable database is possible using an online service with accumulation of more diverse practical images. Furthermore, it can be built on so that images can be studied in a practical manner using smartphones. The use of a radiography training simulator should be able to provide higher quality practical training through repetition without the ethical issues arising from radiation exposure. It can become standardized way that remove the constraints of patient position when using an anthropomorphic phantom.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Rosen, K. R. (2008). The history of medical simulation. Journal of Critical Care, 23(2), 157–166.CrossRef Rosen, K. R. (2008). The history of medical simulation. Journal of Critical Care, 23(2), 157–166.CrossRef
2.
Zurück zum Zitat John, N. W. (2008). Design and implementation of medical training simulators. Virtual Reality, 12(4), 269–279.CrossRef John, N. W. (2008). Design and implementation of medical training simulators. Virtual Reality, 12(4), 269–279.CrossRef
3.
Zurück zum Zitat Sonoda, M., Takano, M., Miyahara, J., et al. (1983). Computed radiography utilizing scanning laser stimulated luminescence. Radiology, 148(3), 833–838.CrossRef Sonoda, M., Takano, M., Miyahara, J., et al. (1983). Computed radiography utilizing scanning laser stimulated luminescence. Radiology, 148(3), 833–838.CrossRef
4.
Zurück zum Zitat Dobbins, J. T, 3rd, Ergun, D. L., Rutz, L., et al. (1995). DQE(f) of four generations of computed radiography acquisition devices. Medical Physics, 22(10), 1581–1593.CrossRef Dobbins, J. T, 3rd, Ergun, D. L., Rutz, L., et al. (1995). DQE(f) of four generations of computed radiography acquisition devices. Medical Physics, 22(10), 1581–1593.CrossRef
5.
Zurück zum Zitat Chotas, H. G., Dobbins, J. T, 3rd, & Ravin, C. E. (1999). Principles of digital radiography with large-area, electronically readable detectors: A review of the basics. Radiology, 210(3), 595–599.CrossRef Chotas, H. G., Dobbins, J. T, 3rd, & Ravin, C. E. (1999). Principles of digital radiography with large-area, electronically readable detectors: A review of the basics. Radiology, 210(3), 595–599.CrossRef
6.
Zurück zum Zitat Rowlands, J. A., Zhao, W., Blevis, I. M., et al. (1997). Flat-panel digital radiology with amorphous selenium and active-matrix readout. Radiographics, 17(3), 753–760.CrossRef Rowlands, J. A., Zhao, W., Blevis, I. M., et al. (1997). Flat-panel digital radiology with amorphous selenium and active-matrix readout. Radiographics, 17(3), 753–760.CrossRef
7.
Zurück zum Zitat Bacher, K., Smeets, P., Vereecken, L., et al. (2006). Image quality and radiation dose on digital chest imaging: Comparison of amorphous silicon and amorphous selenium flat-panel systems. AJR American Journal of Roentgenology, 187(3), 630–637.CrossRef Bacher, K., Smeets, P., Vereecken, L., et al. (2006). Image quality and radiation dose on digital chest imaging: Comparison of amorphous silicon and amorphous selenium flat-panel systems. AJR American Journal of Roentgenology, 187(3), 630–637.CrossRef
8.
Zurück zum Zitat Floyd, C. E, Jr, Warp, R. J., Dobbins, J. T, 3rd, et al. (2001). Imaging characteristics of an amorphous silicon flat-panel detector for digital chest radiography. Radiology, 218(3), 683–688.CrossRef Floyd, C. E, Jr, Warp, R. J., Dobbins, J. T, 3rd, et al. (2001). Imaging characteristics of an amorphous silicon flat-panel detector for digital chest radiography. Radiology, 218(3), 683–688.CrossRef
9.
Zurück zum Zitat Schaefer-Prokop, C., Uffmann, M., Eisenhuber, E., et al. (2003). Digital radiography of the chest: Detector techniques and performance parameters. Journal of Thoracic Imaging, 18(3), 124–137.CrossRef Schaefer-Prokop, C., Uffmann, M., Eisenhuber, E., et al. (2003). Digital radiography of the chest: Detector techniques and performance parameters. Journal of Thoracic Imaging, 18(3), 124–137.CrossRef
10.
Zurück zum Zitat Huda, W., Rill, L. N., & Bruner, A. P. (1997). Relative speeds of Kodak computed radiography phosphors and screen-film systems. Medical Physics, 24(10), 1621–1628.CrossRef Huda, W., Rill, L. N., & Bruner, A. P. (1997). Relative speeds of Kodak computed radiography phosphors and screen-film systems. Medical Physics, 24(10), 1621–1628.CrossRef
11.
Zurück zum Zitat Abrahamson, S., Denson, J. S., & Wolf, R. M. (2004). Effectiveness of a simulator in training anesthesiology residents. 1969. Quality and Safety in Health Care, 13(5), 395–397.CrossRef Abrahamson, S., Denson, J. S., & Wolf, R. M. (2004). Effectiveness of a simulator in training anesthesiology residents. 1969. Quality and Safety in Health Care, 13(5), 395–397.CrossRef
12.
Zurück zum Zitat Maran, N. J., & Glavin, R. J. (2003). Low- to high-fidelity simulation—A continuum of medical education? Medical Education, 37(Suppl 1), 22–28.CrossRef Maran, N. J., & Glavin, R. J. (2003). Low- to high-fidelity simulation—A continuum of medical education? Medical Education, 37(Suppl 1), 22–28.CrossRef
13.
Zurück zum Zitat Ahlberg, G., Hultcrantz, R., Jaramillo, E., et al. (2005). Virtual reality colonoscopy simulation: A compulsory practice for the future colonoscopist? Endoscopy, 37(12), 1198–1204.CrossRef Ahlberg, G., Hultcrantz, R., Jaramillo, E., et al. (2005). Virtual reality colonoscopy simulation: A compulsory practice for the future colonoscopist? Endoscopy, 37(12), 1198–1204.CrossRef
14.
Zurück zum Zitat Kolkman, W., Van de Put, M. A., Van den Hout, W. B., et al. (2007). Implementation of the laparoscopic simulator in a gynecological residency curriculum. Surgical Endoscopy, 21(8), 1363–1368.CrossRef Kolkman, W., Van de Put, M. A., Van den Hout, W. B., et al. (2007). Implementation of the laparoscopic simulator in a gynecological residency curriculum. Surgical Endoscopy, 21(8), 1363–1368.CrossRef
15.
Zurück zum Zitat Berry, M., Lystig, T., Reznick, R., et al. (2006). Assessment of a virtual interventional simulator trainer. Journal of Endovascular Therapy, 13(2), 237–243.CrossRef Berry, M., Lystig, T., Reznick, R., et al. (2006). Assessment of a virtual interventional simulator trainer. Journal of Endovascular Therapy, 13(2), 237–243.CrossRef
16.
Zurück zum Zitat Monsky, W. L., Levine, D., Mehta, T. S., et al. (2002). Using a sonographic simulator to assess residents before overnight call. AJR American Journal of Roentgenology, 178(1), 35–39.CrossRef Monsky, W. L., Levine, D., Mehta, T. S., et al. (2002). Using a sonographic simulator to assess residents before overnight call. AJR American Journal of Roentgenology, 178(1), 35–39.CrossRef
17.
Zurück zum Zitat Towbin, A. J., Paterson, B. E., & Chang, P. J. (2008). Computer-based simulator for radiology: An educational tool. Radiographics, 28(1), 309–316.CrossRef Towbin, A. J., Paterson, B. E., & Chang, P. J. (2008). Computer-based simulator for radiology: An educational tool. Radiographics, 28(1), 309–316.CrossRef
18.
Zurück zum Zitat Kailas, A., & Ingram, M. (2009). Wireless aspects of telehealth. Wireless Personal Communications, 51(4), 673–686.CrossRef Kailas, A., & Ingram, M. (2009). Wireless aspects of telehealth. Wireless Personal Communications, 51(4), 673–686.CrossRef
19.
Zurück zum Zitat Yang, J. I., Ping, Z., Zheng, H., et al. (2006). Towards mobile ubiquitous service environment. Wireless Personal Communications, 38(1), 67–78.CrossRef Yang, J. I., Ping, Z., Zheng, H., et al. (2006). Towards mobile ubiquitous service environment. Wireless Personal Communications, 38(1), 67–78.CrossRef
20.
Zurück zum Zitat Rezaee, A., Yaghmaee, M., & Rahmani, A. (2014). Optimized congestion management protocol for healthcare wireless sensor networks. Wireless Personal Communications, 75(1), 11–34.CrossRef Rezaee, A., Yaghmaee, M., & Rahmani, A. (2014). Optimized congestion management protocol for healthcare wireless sensor networks. Wireless Personal Communications, 75(1), 11–34.CrossRef
21.
Zurück zum Zitat Algaet, M., Noh, Z., Shibghatullah, A., et al. (2014). Provisioning quality of service of wireless telemedicine for e-health services: A review. Wireless Personal Communications, 78(1), 375–406.CrossRef Algaet, M., Noh, Z., Shibghatullah, A., et al. (2014). Provisioning quality of service of wireless telemedicine for e-health services: A review. Wireless Personal Communications, 78(1), 375–406.CrossRef
Metadaten
Titel
Image Selection Algorithm Proposal for Digital Radiography Training Simulator
verfasst von
Joon Koo Choi
Ki Bong Kim
Gha Jung Kim
Publikationsdatum
01.08.2016
Verlag
Springer US
Erschienen in
Wireless Personal Communications / Ausgabe 3/2016
Print ISSN: 0929-6212
Elektronische ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-016-3247-3

Weitere Artikel der Ausgabe 3/2016

Wireless Personal Communications 3/2016 Zur Ausgabe

Neuer Inhalt