Skip to main content
Erschienen in: Wireless Personal Communications 1/2017

04.07.2016

Data Transmission and Network Architecture in Long Range Low Power Sensor Networks for IoT

verfasst von: Dae-Young Kim, Minwoo Jung

Erschienen in: Wireless Personal Communications | Ausgabe 1/2017

Einloggen

Aktivieren Sie unsere intelligente Suche um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Internet of Things (IoT) becomes an inevitable technology for ICT convergence. It gathers information from various objects and provides intelligent services through analyzing the information. To collect surrounding information, IoT employs a sensor network, which is a low-power wireless communication network with numerous sensor nodes. Sensor nodes in conventional sensor networks have short transmission range. However, it is required a sensor network with long transmission range as well as low transmission power consumption for various IoT services. Long transmission range of IoT devices affects transmission environment. Lots of sensor nodes (i.e., IoT devices) in the long range sensor network transmit data to a given gateway node in order to deliver data to a network server. The gateway node can experience serious traffic load to relay the data. It causes to drop transmission efficiency. Therefore, for efficient data transmission, a network architecture and a data transmission method for long range IoT services are necessary. This paper proposes the network and data transmission architecture for the long range sensor networks. The proposed network architecture is based on oneM2M IoT standard. It has Infrastructure Node (IN), Middle Node (MN) and Application Service Node (ASN) as network elements. In the proposed method, IN employs cloned MNs to reduce the traffic load at the MN, which is the gateway. ASN delivers data through MN or cloned MNs to the IN. Through the load balancing by the proposed method at the MN, the efficient data transmission for IoT services in long range sensor networks can be provided. The performance of the proposed method is validated by the computer simulation.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Gubbi, J., Buyya, R., Marusic, S., & Palaniswami, M. (2013). Internet of Things (IoT): A vision, architectural elements, and future directions. Elsevier Future Generation Computer Systems, 29(7), 1645–1660.CrossRef Gubbi, J., Buyya, R., Marusic, S., & Palaniswami, M. (2013). Internet of Things (IoT): A vision, architectural elements, and future directions. Elsevier Future Generation Computer Systems, 29(7), 1645–1660.CrossRef
2.
Zurück zum Zitat Atzori, L., Iera, A., & Morabito, G. (2010). The Internet of Things: A survey. Elsevier Computer Networks, 54(15), 2787–2805.CrossRefMATH Atzori, L., Iera, A., & Morabito, G. (2010). The Internet of Things: A survey. Elsevier Computer Networks, 54(15), 2787–2805.CrossRefMATH
3.
Zurück zum Zitat Sundmaeker, H., Guillemin, P., Friess, P., & Woelfflé, S. (2010). Vision and challenges for realising the Internet of Things. Luxembourg: Publications Office of the European Union. Sundmaeker, H., Guillemin, P., Friess, P., & Woelfflé, S. (2010). Vision and challenges for realising the Internet of Things. Luxembourg: Publications Office of the European Union.
4.
Zurück zum Zitat Kim, S., & Na, W. (2016). Safe data transmission architecture based on cloud for Internet of Things. Wireless Personal Communications, 86(1), 287–300.CrossRef Kim, S., & Na, W. (2016). Safe data transmission architecture based on cloud for Internet of Things. Wireless Personal Communications, 86(1), 287–300.CrossRef
5.
Zurück zum Zitat Bandyopadhyay, D., & Sen, J. (2011). Internet of Things: Applications and challenges in technology and standardization. Wireless Personal Communications, 55(1), 49–69.CrossRef Bandyopadhyay, D., & Sen, J. (2011). Internet of Things: Applications and challenges in technology and standardization. Wireless Personal Communications, 55(1), 49–69.CrossRef
6.
Zurück zum Zitat Akyildiz, I. F., Su, W., Sankarasubramaniam, Y., & Cayirei, E. (2002). A survey on sensor networks. IEEE Communications Magazine, 40(8), 102–114.CrossRef Akyildiz, I. F., Su, W., Sankarasubramaniam, Y., & Cayirei, E. (2002). A survey on sensor networks. IEEE Communications Magazine, 40(8), 102–114.CrossRef
7.
Zurück zum Zitat Culler, D., Estrin, D., & Srivastava, M. (2004). Guest editors introduction: Overview of sensor networks. IEEE Computer, 37(8), 41–49.CrossRef Culler, D., Estrin, D., & Srivastava, M. (2004). Guest editors introduction: Overview of sensor networks. IEEE Computer, 37(8), 41–49.CrossRef
8.
Zurück zum Zitat Tilak, S., Abu-Ghazaleh, N., & Heinzelman, W. (2002). A taxonomy of wireless micro sensor network models. ACM Mobile Computing and Commnunications Review, 6(2), 28–36.CrossRef Tilak, S., Abu-Ghazaleh, N., & Heinzelman, W. (2002). A taxonomy of wireless micro sensor network models. ACM Mobile Computing and Commnunications Review, 6(2), 28–36.CrossRef
9.
Zurück zum Zitat Ghosh, A., & Das, S. K. (2008). Coverage and connectivity issues in wireless sensor networks: A survey. Elsevier Pervasive and Mobile Computing, 4(3), 303–334.CrossRef Ghosh, A., & Das, S. K. (2008). Coverage and connectivity issues in wireless sensor networks: A survey. Elsevier Pervasive and Mobile Computing, 4(3), 303–334.CrossRef
10.
Zurück zum Zitat Kim, D.-Y., Cho, J., & Jeong, B.-S. (2010). Practical data transmission in cluster-based sensor networks. KSII Transactions on Internet and Information Systems (TIIS), 4(3), 224–242. Kim, D.-Y., Cho, J., & Jeong, B.-S. (2010). Practical data transmission in cluster-based sensor networks. KSII Transactions on Internet and Information Systems (TIIS), 4(3), 224–242.
11.
Zurück zum Zitat Kim, D.-Y., Jin, Z., Choi, J., Lee, B. and Cho, J. (2015). Transmission power control with the guaranteed communication reliability in WSN. International Journal of Distributed Sensor Networks, 2015, ID 632590. Kim, D.-Y., Jin, Z., Choi, J., Lee, B. and Cho, J. (2015). Transmission power control with the guaranteed communication reliability in WSN. International Journal of Distributed Sensor Networks, 2015, ID 632590.
12.
Zurück zum Zitat Jin, Z., Kim, D.-Y., Cho, J., & Lee, B. (2015). An analysis on optimal cluster ratio in cluster-based wireless sensor networks. IEEE Sensors Journal, 15(11), 6413–6423.CrossRef Jin, Z., Kim, D.-Y., Cho, J., & Lee, B. (2015). An analysis on optimal cluster ratio in cluster-based wireless sensor networks. IEEE Sensors Journal, 15(11), 6413–6423.CrossRef
13.
Zurück zum Zitat IEEE. (2006). IEEE standard for information technology—telecommunications and information exchange between systems—local and metropolitan area networks—specific requirements—part 15.4: Wireless Mediaum Access Control (MAC) and Physical Layer (PHY) specifications for low-rate wireless personal area networks (LR-WPAN). IEEE Std 802.15.4-2006. IEEE. (2006). IEEE standard for information technology—telecommunications and information exchange between systems—local and metropolitan area networks—specific requirements—part 15.4: Wireless Mediaum Access Control (MAC) and Physical Layer (PHY) specifications for low-rate wireless personal area networks (LR-WPAN). IEEE Std 802.15.4-2006.
14.
Zurück zum Zitat Sornin, N., Luis, M., Eirich, T., Kramp, T., & Hersent, O. (2015). LoRa Alliance LoRaWAN specification. LoRaWAN Specifiction, Release v1.0. Sornin, N., Luis, M., Eirich, T., Kramp, T., & Hersent, O. (2015). LoRa Alliance LoRaWAN specification. LoRaWAN Specifiction, Release v1.0.
15.
Zurück zum Zitat oneM2M. (2014). oneM2M functional architecture baseline draft. oneM2M Technical Specification, oneM2M-TS-0001-V-2014-08. oneM2M. (2014). oneM2M functional architecture baseline draft. oneM2M Technical Specification, oneM2M-TS-0001-V-2014-08.
17.
Zurück zum Zitat Huang, K.-L., Yen, L.-H., Wang, J.-T., Wu, C.-N., & Tseng, C.-C. (2013). A backbone-aware topology formation (BATF) scheme for ZigBee wireless sensor networks. Wireless Personal Communications, 68(1), 47–64.CrossRef Huang, K.-L., Yen, L.-H., Wang, J.-T., Wu, C.-N., & Tseng, C.-C. (2013). A backbone-aware topology formation (BATF) scheme for ZigBee wireless sensor networks. Wireless Personal Communications, 68(1), 47–64.CrossRef
18.
Zurück zum Zitat Mraz, L., Cervenka, V., Komosny, D., & Simek, M. (2013). Comprehensive performance analysis of ZigBee technology based on real measurements. Wireless Personal Communications, 71(4), 2783–2803.CrossRef Mraz, L., Cervenka, V., Komosny, D., & Simek, M. (2013). Comprehensive performance analysis of ZigBee technology based on real measurements. Wireless Personal Communications, 71(4), 2783–2803.CrossRef
19.
Zurück zum Zitat Bontu, C. S., Periyalwar, S., & Pecen, M. (2014). Wireless wide-area networks for internet of things: An air interface protocol for IoT and a simultaneous access channel for uplink IoT communication. IEEE Vehicular Technology Magazine, 9(1), 54–63.CrossRef Bontu, C. S., Periyalwar, S., & Pecen, M. (2014). Wireless wide-area networks for internet of things: An air interface protocol for IoT and a simultaneous access channel for uplink IoT communication. IEEE Vehicular Technology Magazine, 9(1), 54–63.CrossRef
20.
Zurück zum Zitat Ross, S. M. (2002). Probability models for computer science. San Diego: Harcourt/Academic Press. Ross, S. M. (2002). Probability models for computer science. San Diego: Harcourt/Academic Press.
21.
Zurück zum Zitat Trivedi, K. S. (2002). Probability and statistics with reliability, queuing and computer science applications. Hoboken: John Wiley & Sons Inc.MATH Trivedi, K. S. (2002). Probability and statistics with reliability, queuing and computer science applications. Hoboken: John Wiley & Sons Inc.MATH
22.
Zurück zum Zitat MacDougall, M. H. (1987). Simulating computer systems, techniques and tool. Cambridge: MIT Press. MacDougall, M. H. (1987). Simulating computer systems, techniques and tool. Cambridge: MIT Press.
Metadaten
Titel
Data Transmission and Network Architecture in Long Range Low Power Sensor Networks for IoT
verfasst von
Dae-Young Kim
Minwoo Jung
Publikationsdatum
04.07.2016
Verlag
Springer US
Erschienen in
Wireless Personal Communications / Ausgabe 1/2017
Print ISSN: 0929-6212
Elektronische ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-016-3482-7

Weitere Artikel der Ausgabe 1/2017

Wireless Personal Communications 1/2017 Zur Ausgabe