Skip to main content
Log in

Implementation of Machine Learning for Autonomic Capabilities in Self-Organizing Heterogeneous Networks

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

The 3GPP’s self-organizing networks (SONs) standards are a huge step towards the autonomic networking concept. They are the response to the increasing complexity and size of the mobile networks. This paper proposes a novel scheme for SONs. This scheme is based on machine learning techniques and additionally adopting the concept of abstraction and modularity. The implementation of these concepts in a machine learning scheme allows the usage of independent vendor and technology algorithms and reusability of the proposed approach for different optimization tasks in a network. The scheme is tested for solving an energy saving optimization problem in a heterogeneous network. The results from simulation experiments show that such an approach could be an appropriate solution for developing a full self-managing future network.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Hämäläinen, S., Sanneck, H., & Sartori, C. (2012). LTE self-organising networks (SON). New York: Wiley.

    Google Scholar 

  2. Semov, P., Koleva, P., Tonchev, K., Poulkov, V., & Mihovska, A. (2016). Autonomous learning model for achieving multi cell load balancing capabilities in HetNet. In Proceedngs of the IEEE BlackSeaCom 2016 Conference. Varna, Bulgaria.

  3. Altman, Z., Sallem, S., Nasri, R., Sayrac, B., & Clerc, M. (2014). Particle swarm optimization for mobility load balancing SON in LTE Networks. In Wireless Communications and Networking Conference Workshops (WCNCW) (pp. 172–177). IEEE. doi:10.1109/WCNCW.2014.6934881.

  4. Morales-Tirado, L., Suris-Pietri, J. E., & Reed, J. H. (2009). A hybrid cognitive engine for improving coverage in 3G wireless networks. In Communications Workshops, 2009. ICC Workshops 2009 (pp. 1–5). doi:10.1109/ICCW.2009.5208034.

  5. Wang, Y., & Zhang, K. (2011). Decision tree based unsupervised learning to network selection in heterogeneous wireless networks. In Consumer communications and networking conference (CCNC) (pp. 1108–1109). IEEE. doi:10.1109/CCNC.2011.5766340.

  6. Lee, C.-L., Su, W.-S., Tang, K.-A., & Chao, W.-I. (2014). Design of handover self-optimization using big data analytics. In Network operations and management symposium (APNOMS), 2014 16th Asia-Pacific (pp. 1–5). doi:10.1109/APNOMS.2014.6996546.

  7. Kon, Y., Ito, M., Hassel, N., Hasegawa, M., Ishizu, K., & Harada, H. (2012). Autonomous parameter optimization of a heterogeneous wireless network aggregation system using machine learning algorithms. In Consumer communications and networking conference (CCNC) (pp. 894–898). IEEE. doi:10.1109/CCNC.2012.6181186.

  8. Ul Islam, M. N., & Mitschele-Thiel, A. (2012). Reinforcement learning strategies for self-organized coverage and capacity optimization. In Wireless Communications and Networking Conference (WCNC) (pp. 2818–2823). IEEE. doi:10.1109/WCNC.2012.6214281.

  9. Thampi, A., Kaleshi, D., Randall, P., Featherstone, W., & Armour, S. (2012). A sparse sampling algorithm for self-optimisation of coverage in LTE networks. In Wireless communication systems (ISWCS) (pp. 909–913). doi:10.1109/ISWCS.2012.6328500.

  10. Razavi, R., & Claussen, H. (2013). Improved fuzzy reinforcement learning for self-optimization of heterogeneous wireless networks. In International conference on telecommunications (ICT) (pp. 1–5). doi:10.1109/ICTEL.2013.6632073.

  11. Rouzbeh, R., Siegfried, K., & Holger, C. (2010). A fuzzy reinforcement learning approach for self-optimization of coverage in LTE networks. Bell Labs Technical Journal, 15(3), 153–175. doi:10.1002/bltj.20463.

    Article  Google Scholar 

  12. Semov, P. T., Poulkov, V., Mihovska, A., & Prasad, R. (2014). Increasing throughput and fairness for users in heterogeneous semi coordinated deployments. In Wireless communications and networking conference workshops (WCNCW) (pp. 40–45). IEEE. doi:10.1109/WCNCW.2014.6934858.

  13. Baltiiski, P., Iliev, I., Kehaiov, B., Poulkov, V., & Cooklev, T. (2015). Long-term spectrum monitoring with big data analysis and machine learning for cloud-based radio access networks. Wireless Personal Communications. doi:10.1007/s11277-015-2631-8.

    Google Scholar 

  14. Thilina, K. M., Choi, K. W., Saquib, N., & Hossain, E. (2013). Machine learning techniques for cooperative spectrum sensing in cognitive radio networks. IEEE Journal on Selected Areas in Communications, 31(11), 2209–2221. doi:10.1109/JSAC.2013.131120.

    Article  Google Scholar 

  15. Wu, R., Wen, Z., Fan, C., Liu, J., & Ma, Z. (2010). Self-optimization of antenna configuration in LTE-advance networks for energy saving. In 3rd IEEE international conference on broadband network and multimedia technology (IC-BNMT) (pp. 529–534). doi:10.1109/ICBNMT.2010.5705146.

  16. Mwanje Stephen S., & Mitschele-Thiel A. (2013). A Q-learning strategy for LTE mobility load balancing. In 24th international symposium on personal indoor and mobile radio communications (PIMRC) (pp. 2154–2158). IEEE. doi:10.1109/PIMRC.2013.6666500.

  17. Mwanje, S. S., & Mitschele-Thiel A. (2014). Distributed cooperative Q-learning for mobility-sensitive handover optimization in LTE SON. In Symposium on computers and communication (ISCC) (pp. 1–6). IEEE. doi:10.1109/ISCC.2014.6912619.

  18. Eduardo, S., Mihovska, A., Rodrigues, A., Prasad, N., & Prasad, R. (2013). Cell load balancing in heterogeneous scenarios. In Proceedings of GWS 2013, June 24–28, 2013, Atlantic City, NJ.

  19. Monteiro, N., Mihovska, A., Rodrigues, A., Prasad, N., & Prasad, R. (2013). Interference analysis in a LTE-A HetNet scenario: Coordination vs. uncoordination. In Proceedings of GWS 2013, June 24–28, 2013, Atlantic City, NJ.

  20. GPP. Evolved Universal Terrestrial Radio Access (E-UTRA); Further advancements for E-UTRA physical layer aspects; (Release 9). TR 36.814, 3rd Generation Partnership Project (3GPP), March 2010.

  21. Li, J., Bose, A., & Zhao, Y. Q. (2005). Rayleigh at fading channels’ capacity. In Proceedings of the 3rd annual communication networks and services research conference (pp. 214–217).

  22. Oliver, B., Anton, A. Michael, W., & Ulrich, B. (2013). Energy efficiency of LTE networks under traffic loads of 2020. In Proceedings of the tenth international symposium on wireless communication systems (ISWCS 2013) (pp. 1–5).

  23. Arnold, O., Richter, F., Fettweis, G., & Blume, O. (2010). Power consumption modeling of different base station types in heterogeneous cellular networks. In Future Network and Mobile Summit (pp. 1–8).

  24. Zaki, M. J., & Meirajr, W. (2014). Data mining and analysis. Cambridge: Cambridge University Press.

    Google Scholar 

  25. Ketchen, D. J., Jr., & Shook, C. L. (1996). The application of cluster analysis in strategic management research: An analysis and critique. Strategic Management Journal, 17(6), 441–458. doi:10.1002/(SICI)1097-0266(199606)17:6<441::AID-SMJ819>3.0.CO;2-G.

    Article  Google Scholar 

  26. Sutton, Richard S., & Barto, Andrew. (1998). Reinforcement learning: An introduction. Cambridge, MA: MIT Press.

    Google Scholar 

  27. Surhone, L. M., Timpledon, M. T., & Marseken, S. F. (2010). Nearest—Neighbor interpolation. VDM Publishing. ISBN 9786131015762.

  28. Suykens, J. A. K. (2001). Nonlinear modelling and support vector machines. In IMTC 2001 (Vol. 1, pp. 287–294). doi:10.1109/IMTC.2001.928828.

  29. Bousia, A., Kartsakli, E., Alonso, L., & Verikoukis, C. (2012). Energy efficient base station maximization switch off scheme for LTE-advanced. In 2012 IEEE 17th international workshop on computer aided modeling and design of communication links and networks (CAMAD). doi:10.1109/CAMAD.2012.6335345.

  30. Roth-Mandutz, E., & Mıtschele-Thıel, A. (2013). LTE energy saving SON using fingerprinting for identification of cells to be activated. In Future Network and Mobile Summit (FutureNetworkSummit). ISBN: 978-1-905824-37-3.

  31. Hiltunen, K. (2013). Improving the energy-efficiency of dense LTE networks by adaptive activation of cells. In 2013 IEEE international conference on communications workshops (ICC). doi:10.1109/ICCW.2013.6649410.

  32. Hiltunen, K. (2013). Utilizing eNodeB sleep mode to improve the energy-efficiency of dense LTE networks. In 2013 IEEE 24th annual international symposium on personal, indoor, and mobile radio communications (PIMRC). doi:10.1109/PIMRC.2013.6666707.

  33. Ambrosy, A., Blume, O., Ferling, D., Jueschke, P., Wilhelm, M., & Yu, X. (2014). Energy SAVINGS in LTE macro base stations. In Wireless and mobile networking conference (WMNC), 2014 7th IFIP. doi:10.1109/WMNC.2014.6878872.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir Poulkov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Semov, P., Al-Shatri, H., Tonchev, K. et al. Implementation of Machine Learning for Autonomic Capabilities in Self-Organizing Heterogeneous Networks. Wireless Pers Commun 92, 149–168 (2017). https://doi.org/10.1007/s11277-016-3843-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-016-3843-2

Keywords

Navigation