Skip to main content
Erschienen in: Wireless Personal Communications 4/2017

14.08.2017

On the detection of Cardiac Arrhythmia with Principal Component Analysis

verfasst von: Harjeet Kaur, Rajni Rajni, Ph.D.

Erschienen in: Wireless Personal Communications | Ausgabe 4/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The Electrocardiogram (ECG) signal is used to record the electrical activity of heart. The subtle variations in ECG attributes are used by cardiologists for diagnosis of heart anomalies. But, for prognosis of cardiac ailments feature extraction from electrocardiographic signal becomes extremely difficult due to presence of noise. With the aim of noise reduction, a hybrid technique involving Extended Kalman filter along with Discrete Wavelet transform for effectively improving signal quality is focused as a powerful tool. The performance of denoising algorithm is evaluated in terms of signal to noise ratio and mean square error. On denoised signal, a quick, simple and effectual approach based on Principal Component Analysis is proposed for R-peak and QRS complex detection. The beat detector performance is validated with MIT-BIH arrhythmia database, yielding a sensitivity of 99.93%, positive predictivity of 99.98% and a 0.079% detection error rate, being a positive outcome in comparison with recent researches. Later, different types of arrhythmias are detected on the basis of heart rate and morphological characteristics of ECG waveform.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Hasan, M. A., & Mamun, M. (2012). Hardware approach of R-peak detection for the measurement of fetal and maternal heart rates. Journal of Applied Research and Technology, 10, 835–844. Hasan, M. A., & Mamun, M. (2012). Hardware approach of R-peak detection for the measurement of fetal and maternal heart rates. Journal of Applied Research and Technology, 10, 835–844.
2.
Zurück zum Zitat Jiang, W., & Kong, S. G. (2007). Block-based neural networks for personalized ECG signal classification. IEEE Transactions on Neural Networks, 18, 1750–1761.CrossRef Jiang, W., & Kong, S. G. (2007). Block-based neural networks for personalized ECG signal classification. IEEE Transactions on Neural Networks, 18, 1750–1761.CrossRef
3.
Zurück zum Zitat Min, Y. J., Kim, H. K., Kang, Y. R., Kim, G. S., Park, J., & Kim, S. W. (2013). Design of wavelet based ECG detector for implantable cardiac pacemakers. IEEE Transactions on Biomedical Circuits and Systems, 7, 426–436.CrossRef Min, Y. J., Kim, H. K., Kang, Y. R., Kim, G. S., Park, J., & Kim, S. W. (2013). Design of wavelet based ECG detector for implantable cardiac pacemakers. IEEE Transactions on Biomedical Circuits and Systems, 7, 426–436.CrossRef
4.
Zurück zum Zitat Acharya, U. R. (2007). Advances in cardiac signal processing. Berlin Heidelberg: Springer.CrossRefMATH Acharya, U. R. (2007). Advances in cardiac signal processing. Berlin Heidelberg: Springer.CrossRefMATH
5.
Zurück zum Zitat Banerjee, S., Gupta, R., & Mitra, M. (2012). Delineation of ECG characteristic features using multiresolution wavelet analysis method. Measurement, 45, 474–487.CrossRef Banerjee, S., Gupta, R., & Mitra, M. (2012). Delineation of ECG characteristic features using multiresolution wavelet analysis method. Measurement, 45, 474–487.CrossRef
6.
Zurück zum Zitat Sufi, F., & Khalil, I. (2011). Diagnosis of cardiovascular abnormalities from compressed ECG: a data mining based approach. IEEE Transactions on Information Technology in Biomedicine, 15, 33–39.CrossRef Sufi, F., & Khalil, I. (2011). Diagnosis of cardiovascular abnormalities from compressed ECG: a data mining based approach. IEEE Transactions on Information Technology in Biomedicine, 15, 33–39.CrossRef
7.
Zurück zum Zitat Mcsharry, P. E., Clifford, G. D., Tarassenko, L., & Smith, L. A. (2003). A dynamical model for generating synthetic electrocardiogram signals. IEEE Transactions on Biomedical Engineering, 50, 289–294.CrossRef Mcsharry, P. E., Clifford, G. D., Tarassenko, L., & Smith, L. A. (2003). A dynamical model for generating synthetic electrocardiogram signals. IEEE Transactions on Biomedical Engineering, 50, 289–294.CrossRef
8.
Zurück zum Zitat Wu, Y., Rangayyan, R. M., Zhou, Y., & Ng, S. C. (2009). Filtering electrocardiographic signals using an unbiased and normalized adaptive noise reduction system. Medical Engineering & Physics, 31, 17–26.CrossRef Wu, Y., Rangayyan, R. M., Zhou, Y., & Ng, S. C. (2009). Filtering electrocardiographic signals using an unbiased and normalized adaptive noise reduction system. Medical Engineering & Physics, 31, 17–26.CrossRef
9.
Zurück zum Zitat Smital, L., Vitek, M., Kozumplik, J., & Provaznik, I. (2013). Adaptive wavelet wiener filtering of ECG signals. IEEE Transactions on Biomedical Engineering, 60, 437–445.CrossRef Smital, L., Vitek, M., Kozumplik, J., & Provaznik, I. (2013). Adaptive wavelet wiener filtering of ECG signals. IEEE Transactions on Biomedical Engineering, 60, 437–445.CrossRef
10.
Zurück zum Zitat Vullings, R., Veries, B., & Bergmans, J. W. M. (2011). An adaptive Kalman filter for ECG signal enhancement. IEEE Transactions on Biomedical Engineering, 58, 1094–1103.CrossRef Vullings, R., Veries, B., & Bergmans, J. W. M. (2011). An adaptive Kalman filter for ECG signal enhancement. IEEE Transactions on Biomedical Engineering, 58, 1094–1103.CrossRef
11.
Zurück zum Zitat Rangayyan, R. M. (2002). Biomedical signal analysis: A case study approach. New York: Wiley-IEEE. Rangayyan, R. M. (2002). Biomedical signal analysis: A case study approach. New York: Wiley-IEEE.
12.
Zurück zum Zitat Kabir, M. A., & Shahnaz, C. (2012). Denoising of ECG signals based on noise reduction algorithms in EMD and wavelets domains. Biomedical Signal Processing and Control, 7, 481–489.CrossRef Kabir, M. A., & Shahnaz, C. (2012). Denoising of ECG signals based on noise reduction algorithms in EMD and wavelets domains. Biomedical Signal Processing and Control, 7, 481–489.CrossRef
13.
Zurück zum Zitat Blanco-Velasco, M., Weng, B., & Barner, K. E. (2008). ECG signal denoising and baseline wander correction based on the empirical mode decomposition. Computers in Biology and Medicine, 38, 1–13.CrossRef Blanco-Velasco, M., Weng, B., & Barner, K. E. (2008). ECG signal denoising and baseline wander correction based on the empirical mode decomposition. Computers in Biology and Medicine, 38, 1–13.CrossRef
14.
Zurück zum Zitat Gao, J., Sultan, H., Hu, J., & Tung, W. W. (2010). Denoising nonlinear time series by adaptive filtering and wavelet shrinkage: A comparison. IEEE Signal Processing Letters, 17, 237–240.CrossRef Gao, J., Sultan, H., Hu, J., & Tung, W. W. (2010). Denoising nonlinear time series by adaptive filtering and wavelet shrinkage: A comparison. IEEE Signal Processing Letters, 17, 237–240.CrossRef
15.
Zurück zum Zitat Kaur, I., & Rajni, G. S. (2014). Denoising of ECG signal with different wavelets. International Journal of Engineering Trends and Technology (IJETT), 9, 658–661.CrossRef Kaur, I., & Rajni, G. S. (2014). Denoising of ECG signal with different wavelets. International Journal of Engineering Trends and Technology (IJETT), 9, 658–661.CrossRef
16.
Zurück zum Zitat Pan, J., & Tompkins, W. J. (1985). A real time QRS complex detection algorithm. IEEE Transactions on Biomedical Engineering, BME, 32, 230–236.CrossRef Pan, J., & Tompkins, W. J. (1985). A real time QRS complex detection algorithm. IEEE Transactions on Biomedical Engineering, BME, 32, 230–236.CrossRef
17.
Zurück zum Zitat Köhler, B. U., Hennig, C., & Orglmeister, R. (2003). QRS detection using zero crossing counts. Progress in Biomedical Research, 8, 138–145. Köhler, B. U., Hennig, C., & Orglmeister, R. (2003). QRS detection using zero crossing counts. Progress in Biomedical Research, 8, 138–145.
18.
Zurück zum Zitat Arzeno, N. M., Deng, Z. D., & Poon, C. S. (2008). Analysis of first-derivative based QRS detection algorithm. IEEE Transactions on Biomedical Engineering, 55, 478–484.CrossRef Arzeno, N. M., Deng, Z. D., & Poon, C. S. (2008). Analysis of first-derivative based QRS detection algorithm. IEEE Transactions on Biomedical Engineering, 55, 478–484.CrossRef
19.
Zurück zum Zitat Slimane, Z. E. H., & Nait-Ali, A. (2010). QRS complex detection using empirical mode decomposition. Digital Signal Processing, 20, 1221–1228.CrossRef Slimane, Z. E. H., & Nait-Ali, A. (2010). QRS complex detection using empirical mode decomposition. Digital Signal Processing, 20, 1221–1228.CrossRef
20.
Zurück zum Zitat Lin, H. Y., Liang, S. Y., Ho, Y. L., Lin, Y. H., & Ma, H. P. (2014). Discrete wavelet transform based noise removal and feature extraction for ECG signals. IRBM, 35, 351–361.CrossRef Lin, H. Y., Liang, S. Y., Ho, Y. L., Lin, Y. H., & Ma, H. P. (2014). Discrete wavelet transform based noise removal and feature extraction for ECG signals. IRBM, 35, 351–361.CrossRef
21.
Zurück zum Zitat Kaur, I., Rajni, R., & Marwaha, A. (2016). ECG signal analysis and arrhythmia detection using wavelet transform. Journal of The Institution of Engineers (India) Series B, 97, 499.CrossRef Kaur, I., Rajni, R., & Marwaha, A. (2016). ECG signal analysis and arrhythmia detection using wavelet transform. Journal of The Institution of Engineers (India) Series B, 97, 499.CrossRef
22.
Zurück zum Zitat Sameni, R., Shamsollahi, M. B., Jutten, C., & Clifford, G. D. (2007). A nonlinear Bayesian filtering framework for ECG denoising. IEEE Transactions on Biomedical Engineering, 54, 2172–2185.CrossRefMATH Sameni, R., Shamsollahi, M. B., Jutten, C., & Clifford, G. D. (2007). A nonlinear Bayesian filtering framework for ECG denoising. IEEE Transactions on Biomedical Engineering, 54, 2172–2185.CrossRefMATH
23.
Zurück zum Zitat Roonizi, E. K., & Sassi, R. (2016). A signal decomposition model-based Bayesian framework for ECG components separation. IEEE Transactions on Signal Processing, 64, 665–674.MathSciNetCrossRef Roonizi, E. K., & Sassi, R. (2016). A signal decomposition model-based Bayesian framework for ECG components separation. IEEE Transactions on Signal Processing, 64, 665–674.MathSciNetCrossRef
24.
Zurück zum Zitat Sayadi, O., & Shamsollahi, M. B. (2008). ECG denoising and compression using a modified extended Kalman filter structure. IEEE Transactions on Biomedical Engineering, 55, 2240–2248.CrossRef Sayadi, O., & Shamsollahi, M. B. (2008). ECG denoising and compression using a modified extended Kalman filter structure. IEEE Transactions on Biomedical Engineering, 55, 2240–2248.CrossRef
25.
Zurück zum Zitat Quali, M.A., Chafaa, K., Ghanai, M., & Lorente, L.M. (2013). ECG signal denoising using extended Kalman filter. In International conference on computer applications technology (ICCAT), pp. 1–6. Quali, M.A., Chafaa, K., Ghanai, M., & Lorente, L.M. (2013). ECG signal denoising using extended Kalman filter. In International conference on computer applications technology (ICCAT), pp. 1–6.
26.
Zurück zum Zitat Dong, H. (2012). Detection of electrocardiography based on wavelet transform and extended Kalman filter. In 4th International conference on intelligent human–machine systems and cybernetics (IHMSC), pp. 138–140. Dong, H. (2012). Detection of electrocardiography based on wavelet transform and extended Kalman filter. In 4th International conference on intelligent human–machine systems and cybernetics (IHMSC), pp. 138–140.
27.
Zurück zum Zitat Lakshmi, P. S., & Raju, V. L. (2015). ECG de-noising using hybrid linearization method. Telkomnika Indonesian Journal of Electrical Engineering, 15, 504–508. Lakshmi, P. S., & Raju, V. L. (2015). ECG de-noising using hybrid linearization method. Telkomnika Indonesian Journal of Electrical Engineering, 15, 504–508.
28.
Zurück zum Zitat Sen, N., & Chandrakar, C. (2014). Development of a novel ECG signal denoising system using extended Kalman filter. International Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering, 3, 7200–7208. Sen, N., & Chandrakar, C. (2014). Development of a novel ECG signal denoising system using extended Kalman filter. International Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering, 3, 7200–7208.
29.
Zurück zum Zitat Zidelmal, Z., Amirou, A., Adnane, M., & Belouchrani, A. (2012). QRS detection based on wavelet coefficients. Computer Methods and Programs in Biomedicine, 107, 490–496.CrossRef Zidelmal, Z., Amirou, A., Adnane, M., & Belouchrani, A. (2012). QRS detection based on wavelet coefficients. Computer Methods and Programs in Biomedicine, 107, 490–496.CrossRef
30.
Zurück zum Zitat Daamouche, A., Hamami, L., Alajlan, N., & Melgani, F. (2012). A wavelet optimization approach for ECG signal classification. Biomedical Signal Processing and Control, 7, 342–349.CrossRef Daamouche, A., Hamami, L., Alajlan, N., & Melgani, F. (2012). A wavelet optimization approach for ECG signal classification. Biomedical Signal Processing and Control, 7, 342–349.CrossRef
31.
Zurück zum Zitat Khorrami, H., & Moavenian, M. (2010). A comparative study of DWT, CWT and DCT transformations in ECG arrhythmias classification. Expert Systems with Applications, 37, 5751–5757.CrossRef Khorrami, H., & Moavenian, M. (2010). A comparative study of DWT, CWT and DCT transformations in ECG arrhythmias classification. Expert Systems with Applications, 37, 5751–5757.CrossRef
32.
Zurück zum Zitat Madeiro, J. P. V., Cortez, P. C., Oliveira, F. I., & Siqueira, R. S. (2007). A new approach to QRS segmentation based on wavelet bases and adaptive threshold technique. Medical Engineering & Physics, 29, 26–37.CrossRef Madeiro, J. P. V., Cortez, P. C., Oliveira, F. I., & Siqueira, R. S. (2007). A new approach to QRS segmentation based on wavelet bases and adaptive threshold technique. Medical Engineering & Physics, 29, 26–37.CrossRef
33.
Zurück zum Zitat Martis, R. J., Acharya, U. R., & Min, L. C. (2013). ECG beat classification using, PCA, LDA, ICA and discrete wavelet transform. Biomedical Signal Processing and Control, 8, 437–448.CrossRef Martis, R. J., Acharya, U. R., & Min, L. C. (2013). ECG beat classification using, PCA, LDA, ICA and discrete wavelet transform. Biomedical Signal Processing and Control, 8, 437–448.CrossRef
34.
Zurück zum Zitat Martis, R. J., Acharya, U. R., Lim, C. M., & Suri, J. S. (2013). Characterization of ECG beats from cardiac arrhythmia using discrete cosine transform in PCA framework. Knowledge-Based Systems, 45, 76–82.CrossRef Martis, R. J., Acharya, U. R., Lim, C. M., & Suri, J. S. (2013). Characterization of ECG beats from cardiac arrhythmia using discrete cosine transform in PCA framework. Knowledge-Based Systems, 45, 76–82.CrossRef
35.
Zurück zum Zitat Martis, R. J., Acharya, U. R., Mandana, K. M., Ray, A. K., & Chakraborty, C. (2012). Application of principal component analysis to ECG signals for automated diagnosis of cardiac health. Expert Systems with Applications, 39, 11792–11800.CrossRef Martis, R. J., Acharya, U. R., Mandana, K. M., Ray, A. K., & Chakraborty, C. (2012). Application of principal component analysis to ECG signals for automated diagnosis of cardiac health. Expert Systems with Applications, 39, 11792–11800.CrossRef
36.
Zurück zum Zitat Rodriguez, R., Mexicano, A., Bila, J., Cervantes, S., & Ponce, R. (2015). Feature extraction of electrocardiogram signals by applying adaptive threshold and principal component analysis. Journal of Applied Research and Technology, 13, 261–269.CrossRef Rodriguez, R., Mexicano, A., Bila, J., Cervantes, S., & Ponce, R. (2015). Feature extraction of electrocardiogram signals by applying adaptive threshold and principal component analysis. Journal of Applied Research and Technology, 13, 261–269.CrossRef
37.
Zurück zum Zitat Goldberger, A. L., Amaral, L. A. N., Glass, L., Hausdroff, J. M., Ivanov, P. C., Mark, R. G., et al. (2000). PhysioBank, Physio Toolkit and PhysioNet: Components of a new research resource for complex physiologic signals. Circulation, 101, e215–e220.CrossRef Goldberger, A. L., Amaral, L. A. N., Glass, L., Hausdroff, J. M., Ivanov, P. C., Mark, R. G., et al. (2000). PhysioBank, Physio Toolkit and PhysioNet: Components of a new research resource for complex physiologic signals. Circulation, 101, e215–e220.CrossRef
38.
Zurück zum Zitat Moody, G. B., & Mark, R. G. (2001). The impact of the MIT-BIH Arrhythmia Database. IEEE Engineering in Medicine and Biology Magazine, 20, 45–50.CrossRef Moody, G. B., & Mark, R. G. (2001). The impact of the MIT-BIH Arrhythmia Database. IEEE Engineering in Medicine and Biology Magazine, 20, 45–50.CrossRef
39.
Zurück zum Zitat Mishra, S., Das, D., Kumar, R., & Sumathi, P. (2015). A power-line interference canceler based on sliding DFT phase locking scheme for ECG signals. IEEE Transactions on Instrumentation and Measurement, 64, 132–142.CrossRef Mishra, S., Das, D., Kumar, R., & Sumathi, P. (2015). A power-line interference canceler based on sliding DFT phase locking scheme for ECG signals. IEEE Transactions on Instrumentation and Measurement, 64, 132–142.CrossRef
40.
Zurück zum Zitat Perlman, O., Katz, A., Weissman, N., Amit, G., & Zigel, Y. (2014). Atrial electrical activity detection using linear combination of 12-lead ECG signals. IEEE Transactions on Biomedical Engineering, 61, 1034–1043.CrossRef Perlman, O., Katz, A., Weissman, N., Amit, G., & Zigel, Y. (2014). Atrial electrical activity detection using linear combination of 12-lead ECG signals. IEEE Transactions on Biomedical Engineering, 61, 1034–1043.CrossRef
41.
Zurück zum Zitat Javadi, M., Arani, S. A. A. A., Sajedin, A., & Ebrahimpour, R. (2013). Classification of ECG arrhythmia by a modular neural network based on mixture of experts and negatively correlated learning. Biomedical Signal Processing and Control, 8, 289–296.CrossRef Javadi, M., Arani, S. A. A. A., Sajedin, A., & Ebrahimpour, R. (2013). Classification of ECG arrhythmia by a modular neural network based on mixture of experts and negatively correlated learning. Biomedical Signal Processing and Control, 8, 289–296.CrossRef
42.
Zurück zum Zitat Reyes, B. A., Posada-Quintero, H. F., Bales, J. R., Clement, A. L., Pins, G. D., Swiston, A., et al. (2014). Novel electrodes for underwater ECG monitoring. IEEE Transactions on Biomedical Engineering, 61, 1863–1876.CrossRef Reyes, B. A., Posada-Quintero, H. F., Bales, J. R., Clement, A. L., Pins, G. D., Swiston, A., et al. (2014). Novel electrodes for underwater ECG monitoring. IEEE Transactions on Biomedical Engineering, 61, 1863–1876.CrossRef
43.
Zurück zum Zitat Chouakri, S. A., Bereksi-Reguig, F., & Taleb-Ahmed, A. (2011). QRS complex detection based on multi wavelet packet decomposition. Applied Mathematics and Computation, 217, 9508–9525.MathSciNetCrossRefMATH Chouakri, S. A., Bereksi-Reguig, F., & Taleb-Ahmed, A. (2011). QRS complex detection based on multi wavelet packet decomposition. Applied Mathematics and Computation, 217, 9508–9525.MathSciNetCrossRefMATH
44.
Zurück zum Zitat Choi, S., Adnane, M., Lee, G. J., Jang, H., Jiang, Z., & Park, H. K. (2010). Development of ECG beat segmentation method by combining low pass filter and irregular R-T interval checkup strategy. Expert Systems with Applications, 37, 5208–5218.CrossRef Choi, S., Adnane, M., Lee, G. J., Jang, H., Jiang, Z., & Park, H. K. (2010). Development of ECG beat segmentation method by combining low pass filter and irregular R-T interval checkup strategy. Expert Systems with Applications, 37, 5208–5218.CrossRef
Metadaten
Titel
On the detection of Cardiac Arrhythmia with Principal Component Analysis
verfasst von
Harjeet Kaur
Rajni Rajni, Ph.D.
Publikationsdatum
14.08.2017
Verlag
Springer US
Erschienen in
Wireless Personal Communications / Ausgabe 4/2017
Print ISSN: 0929-6212
Elektronische ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-017-4791-1

Weitere Artikel der Ausgabe 4/2017

Wireless Personal Communications 4/2017 Zur Ausgabe

Neuer Inhalt