Skip to main content
Erschienen in: Wireless Personal Communications 1/2019

13.12.2018

Energy Efficient Data Collection Algorithm for Mobile Wireless Sensor Network

verfasst von: V. Saranya, S. Shankar, G. R. Kanagachidambaresan

Erschienen in: Wireless Personal Communications | Ausgabe 1/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Wireless sensor network (WSN) with mobile sink serves a lot of industrial and agricultural monitoring applications. The data collection with WSN has been popularly known in many applications such as smart environments, health monitoring, habitat monitoring, surveillance and tracking systems. The mobile sink moves to the corresponding cluster and gathers the data and moves to the next cluster head (CH) for the same. The data loss and waiting time of the data in the CH results from energy consumption and work repetition. This article provides a novel energy efficient data collection scheme. The data collection is done by the sink in a Polling based M/G/1 server model. The cluster member (CM) sends the data in N threshold model to the CH. The CH gathers the data from the CM and reports to sink once it arrives nearby. The energy efficient cluster head selection algorithm is evaluated with the proposed model and the waiting time is analyzed. The data arrival from the CM to the CH is considered as Poisson in nature. The sink mobility with respect to polling system is analyzed. The sink data collection is done through dynamic polling mechanism based on the CH arrival rate. The proposed algorithm outperforms the modified low energy adaptive clustering hierarchy and energy-aware multi-hop routing protocol (M-GEAR) protocols in terms of lifetime, waiting time and throughput. The proposed algorithm provides high resistance to energy hole and HOTSPOT problem.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Li, X., Nayak, A., & Stojmenovic, I. (2010). Sink mobility in wireless sensor networks. In A. Nayak & I. Stojmenovic (Eds.), Wireless sensor and actuator networks. Hoboken: Wiley. Li, X., Nayak, A., & Stojmenovic, I. (2010). Sink mobility in wireless sensor networks. In A. Nayak & I. Stojmenovic (Eds.), Wireless sensor and actuator networks. Hoboken: Wiley.
2.
Zurück zum Zitat Khan, M. I., Gansterer, W. N., & Haring, G. (2012). Static vs. mobile sink: the influence of basic parameters on energy efficiency in wireless sensor networks. Computer Communications, 36, 965–978.CrossRef Khan, M. I., Gansterer, W. N., & Haring, G. (2012). Static vs. mobile sink: the influence of basic parameters on energy efficiency in wireless sensor networks. Computer Communications, 36, 965–978.CrossRef
3.
Zurück zum Zitat Hamida, E., & Chelius, G. (2008). Strategies for data dissemination to mobile sinks in wireless sensor networks. IEEE Wireless Communications, 15(6), 31–37.CrossRef Hamida, E., & Chelius, G. (2008). Strategies for data dissemination to mobile sinks in wireless sensor networks. IEEE Wireless Communications, 15(6), 31–37.CrossRef
4.
Zurück zum Zitat Halder, S., & Ghosal, A. (2016). Lifetime enhancement of wireless sensor networks by avoiding energy-holes with a Gaussian distribution. Springer Telecommunication Systems, 64, 113.CrossRef Halder, S., & Ghosal, A. (2016). Lifetime enhancement of wireless sensor networks by avoiding energy-holes with a Gaussian distribution. Springer Telecommunication Systems, 64, 113.CrossRef
5.
Zurück zum Zitat Saranya, V., Shankar, S., & Kanagachidambaresan, G. R. (2018). Energy efficient clustering scheme (EECS) for wireless sensor network with mobile sink. Wireless Personal Communications, 100(4), 1553–1567.CrossRef Saranya, V., Shankar, S., & Kanagachidambaresan, G. R. (2018). Energy efficient clustering scheme (EECS) for wireless sensor network with mobile sink. Wireless Personal Communications, 100(4), 1553–1567.CrossRef
7.
Zurück zum Zitat Ferng, H.-W., Tendean, R., & Kurniawan, A. (2012). Energy-efficient routing protocol for wireless sensor networks with static clustering and dynamic structure. Wireless Personal Communications, 65, 347–367.CrossRef Ferng, H.-W., Tendean, R., & Kurniawan, A. (2012). Energy-efficient routing protocol for wireless sensor networks with static clustering and dynamic structure. Wireless Personal Communications, 65, 347–367.CrossRef
8.
Zurück zum Zitat He, L. (2012). Evaluating service disciplines for on-demand mobile data collection in sensor networks. IEEE Transactions on Mobile Computing, 13(4), 797–810. He, L. (2012). Evaluating service disciplines for on-demand mobile data collection in sensor networks. IEEE Transactions on Mobile Computing, 13(4), 797–810.
9.
Zurück zum Zitat Rasouli, R., Ahmadi, M., & Ahmadvand, A. (2014). Energy consumption estimation in clustered wireless sensor networks using M/M/1 Q queuing model. International Journal of Wireless & Mobile Networks (IJWMN), 5, 15.CrossRef Rasouli, R., Ahmadi, M., & Ahmadvand, A. (2014). Energy consumption estimation in clustered wireless sensor networks using M/M/1 Q queuing model. International Journal of Wireless & Mobile Networks (IJWMN), 5, 15.CrossRef
10.
Zurück zum Zitat Jiang, F. -C., Huang, D. -C., Tung, C. -Y, & Wang, K. -H. (2010). Mitigation techniques for the energy hole problem in sensor networks using N-policy M/G/l queuing models in IET International Conference on Frontier Computing. Theory, Technologies and Applications, 281–286. Jiang, F. -C., Huang, D. -C., Tung, C. -Y, & Wang, K. -H. (2010). Mitigation techniques for the energy hole problem in sensor networks using N-policy M/G/l queuing models in IET International Conference on Frontier Computing. Theory, Technologies and Applications, 281–286.
11.
Zurück zum Zitat Kanagachidambaresan, G. R., & Chitra, A. (2015). Fail safe fault tolerant mechanism for wireless body sensor network (WBSN). Wireless Personal Communication, 80(1), 247–260.CrossRef Kanagachidambaresan, G. R., & Chitra, A. (2015). Fail safe fault tolerant mechanism for wireless body sensor network (WBSN). Wireless Personal Communication, 80(1), 247–260.CrossRef
12.
Zurück zum Zitat Huanga, D.-C., & Lee, J.-H. (2013). A dynamic N threshold prolongs lifetime method for wireless sensor nodes. Elsevier Mathematical and Computer Modelling, 57, 2731–2741.MathSciNetCrossRef Huanga, D.-C., & Lee, J.-H. (2013). A dynamic N threshold prolongs lifetime method for wireless sensor nodes. Elsevier Mathematical and Computer Modelling, 57, 2731–2741.MathSciNetCrossRef
13.
Zurück zum Zitat Peng, Y., Li, Y., Shu, L., & Wang, W. (2013). An energy-efficient clustered distributed coding for large-scale wireless sensor networks. The Journal of Supercomputing Springer, 66(2), 649–669.CrossRef Peng, Y., Li, Y., Shu, L., & Wang, W. (2013). An energy-efficient clustered distributed coding for large-scale wireless sensor networks. The Journal of Supercomputing Springer, 66(2), 649–669.CrossRef
14.
Zurück zum Zitat He, L., Zhuang, Y., Pan, J., & Xu, J. (2014). Evaluating on-demand data collection with mobile elements in wireless sensor networks. IEEE Journals & Magazines, 13, 797–810. He, L., Zhuang, Y., Pan, J., & Xu, J. (2014). Evaluating on-demand data collection with mobile elements in wireless sensor networks. IEEE Journals & Magazines, 13, 797–810.
15.
Zurück zum Zitat Jiang, C. & Huang, D-C. (2010). Design framework to optimize power consumption and latency delay for sensor nodes using min (N, T) policy M/G/1 queuing models. In IEEE Conference Publications, pp. 1–8. Jiang, C. & Huang, D-C. (2010). Design framework to optimize power consumption and latency delay for sensor nodes using min (N, T) policy M/G/1 queuing models. In IEEE Conference Publications, pp. 1–8.
16.
Zurück zum Zitat Murugan, K., & Pathan, A.-S. K. (2015). Prolonging the lifetime of wireless sensor networks using secondary sink nodes. Springer Telecommunication Systems, 62, 347–361.CrossRef Murugan, K., & Pathan, A.-S. K. (2015). Prolonging the lifetime of wireless sensor networks using secondary sink nodes. Springer Telecommunication Systems, 62, 347–361.CrossRef
17.
Zurück zum Zitat Wang, Z., Yang, K. & Hunter, D. K. (2012). Modelling and analysis of multi-sink wireless sensor networks using queuing theory. In 4th Computer Science and Electronic Engineering Conference, pp. 169–174. Wang, Z., Yang, K. & Hunter, D. K. (2012). Modelling and analysis of multi-sink wireless sensor networks using queuing theory. In 4th Computer Science and Electronic Engineering Conference, pp. 169–174.
18.
Zurück zum Zitat Dudin, A. N., Vishnevsky, V. M., & Sinjugina, J. V. (2014). Analysis of the BMAP/G/1 queue with gated service and adaptive vacations duration. Springer Telecommunication systems, 61, 403–415.CrossRef Dudin, A. N., Vishnevsky, V. M., & Sinjugina, J. V. (2014). Analysis of the BMAP/G/1 queue with gated service and adaptive vacations duration. Springer Telecommunication systems, 61, 403–415.CrossRef
19.
Zurück zum Zitat Musumpuk, R., Walingo, T & Takawira, F. (2015). Probability generating function, mean and variance of the service time distribution of an M/Gc/1 queuing. Musumpuk, R., Walingo, T & Takawira, F. (2015). Probability generating function, mean and variance of the service time distribution of an M/Gc/1 queuing.
20.
Zurück zum Zitat Harrison, P. G., Patel, N. M., & Knottenbelt, W. J. (2016). Energy–performance trade-offs via the EP queue. ACM Transactions on Modeling and Performance Evaluation of Computing Systems, 1(2), 6.CrossRef Harrison, P. G., Patel, N. M., & Knottenbelt, W. J. (2016). Energy–performance trade-offs via the EP queue. ACM Transactions on Modeling and Performance Evaluation of Computing Systems, 1(2), 6.CrossRef
21.
Zurück zum Zitat Tang, S. (2013). An analytic traffic model with adaptive QoS control in an unreliable wireless sensor network. Springer Telecommunication Systems, 53, 415–424.CrossRef Tang, S. (2013). An analytic traffic model with adaptive QoS control in an unreliable wireless sensor network. Springer Telecommunication Systems, 53, 415–424.CrossRef
22.
Zurück zum Zitat Jiang, F.-C., Huang, D.-C., Yang, C.-T., & Leu, F.-Y. (2012). Lifetime elongation for wireless sensor network using queue-based approaches. The Journal of Supercomputing Springer, 59(3), 1312–1335.CrossRef Jiang, F.-C., Huang, D.-C., Yang, C.-T., & Leu, F.-Y. (2012). Lifetime elongation for wireless sensor network using queue-based approaches. The Journal of Supercomputing Springer, 59(3), 1312–1335.CrossRef
23.
Zurück zum Zitat Jiang, F.-C., Huang, D.-C., Yang, C.-T., & Leu, F.-Y. (2011). Lifetime elongation for wireless sensor network using queue-based approaches. Journal of Supercomputing, 59, 1312–1335.CrossRef Jiang, F.-C., Huang, D.-C., Yang, C.-T., & Leu, F.-Y. (2011). Lifetime elongation for wireless sensor network using queue-based approaches. Journal of Supercomputing, 59, 1312–1335.CrossRef
24.
Zurück zum Zitat De Cuypere, E., De Turck, K., & Fiems, D. (2017). A queueing model of an energy harvesting sensor node with data buffering. Springer Telecommunication Systems, 67, 281–295.CrossRef De Cuypere, E., De Turck, K., & Fiems, D. (2017). A queueing model of an energy harvesting sensor node with data buffering. Springer Telecommunication Systems, 67, 281–295.CrossRef
25.
Zurück zum Zitat Kanagachidambaresan, G. R., & Chitra, A. (2016). TA-FSFT thermal aware fail safe fault tolerant algorithm for wireless body sensor network. Wireless Personal Communication, 90(4),1935–1950.CrossRef Kanagachidambaresan, G. R., & Chitra, A. (2016). TA-FSFT thermal aware fail safe fault tolerant algorithm for wireless body sensor network. Wireless Personal Communication, 90(4),1935–1950.CrossRef
26.
Zurück zum Zitat Darabkh, K. A., Albtoush, W. Y., & Jafar, I. F. (2017). Improved clustering algorithms for target tracking in wireless sensor networks. The Journal of Supercomputing Springer, 73(5), 1952–1977.CrossRef Darabkh, K. A., Albtoush, W. Y., & Jafar, I. F. (2017). Improved clustering algorithms for target tracking in wireless sensor networks. The Journal of Supercomputing Springer, 73(5), 1952–1977.CrossRef
27.
Zurück zum Zitat Shin, K., & Kim, S. (2012). Predictive routing for mobile sinks in wireless sensor networks: a milestone-based approach. The Journal of Supercomputing Springer, 62(3), 1519–1536.CrossRef Shin, K., & Kim, S. (2012). Predictive routing for mobile sinks in wireless sensor networks: a milestone-based approach. The Journal of Supercomputing Springer, 62(3), 1519–1536.CrossRef
28.
Zurück zum Zitat Toloueiashtian, M., & Motameni, H. (2018). A new clustering approach in wireless sensor networks using fuzzy system. The Journal of Supercomputing Springer, 74(2), 717–737.CrossRef Toloueiashtian, M., & Motameni, H. (2018). A new clustering approach in wireless sensor networks using fuzzy system. The Journal of Supercomputing Springer, 74(2), 717–737.CrossRef
29.
Zurück zum Zitat Wang, J., Cao, J., Ji, S., & Park, J. H. (2017). Energy-efficient cluster-based dynamic routes adjustment approach for wireless sensor networks with mobile sinks. The Journal of Supercomputing Springer, 73(7), 3277–3290.CrossRef Wang, J., Cao, J., Ji, S., & Park, J. H. (2017). Energy-efficient cluster-based dynamic routes adjustment approach for wireless sensor networks with mobile sinks. The Journal of Supercomputing Springer, 73(7), 3277–3290.CrossRef
Metadaten
Titel
Energy Efficient Data Collection Algorithm for Mobile Wireless Sensor Network
verfasst von
V. Saranya
S. Shankar
G. R. Kanagachidambaresan
Publikationsdatum
13.12.2018
Verlag
Springer US
Erschienen in
Wireless Personal Communications / Ausgabe 1/2019
Print ISSN: 0929-6212
Elektronische ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-018-6109-3

Weitere Artikel der Ausgabe 1/2019

Wireless Personal Communications 1/2019 Zur Ausgabe

Neuer Inhalt