Skip to main content
Erschienen in: Wireless Personal Communications 2/2019

18.02.2019

An Enhanced MPR OLSR Protocol for Efficient Node Selection Process in Cognitive Radio Based VANET

verfasst von: M. Usha, B. Ramakrishnan

Erschienen in: Wireless Personal Communications | Ausgabe 2/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A VANET is an excellent instance of a wireless sensor network. The mobile vehicles are the nodes and communication happens between the vehicular nodes. This facility of communicating with the vehicular nodes finds varied applications ranging from entertainment to emergency services. When combined with cognitive radio techniques, VANETs are equipped with the facility of sensing the spectrum opportunistically. When the spectrum is sensed efficiently, the channel and the bandwidth can be utilized effectively. To achieve this, we have coordinated the enhanced Optimal Link State Routing Protocol (MMPR-OLSR) with the GSA-PSO (Gravitational Search-Particle Swarm Optimization) scheme in combination with the cognitive radio technique. This technique can be applied to the Vehicular Sensor Networks. MMPR-OLSR with GSA-PSO optimization facilitates the MMPR-OLSR protocol to select the suitable member nodes using an optimal searching technique. The GSA-PSO optimization not only helps in choosing the appropriate MMPR nodes, but also helps in reducing the unnecessary overheads due to the propagation of the control packets. By selecting the appropriate MMPR nodes. It is also possible to minimize the number of relay selector nodes used in transmission. The optimization technique also focuses on assigning the channels among all the network users. This is controlled by our proposed approach. A group of nodes are selected before the start of the actual transmission. These vehicular nodes within the communication range are used as relays in the transmission. These nodes are categorized as Multi Point Relays. Cognitive radio plays an active role by identifying the idle channels, thus enabling the usage of the unused channels. Our proposed approach works efficiently in achieving the objective of effective channel utilization combined with efficient transmission. Our proposed approach is simulated using the NS2 platform and is evaluated based on important network metrics. Our proposed method shows a sharp decrease in delay and a high packet delivery ratio in addition to a high channel utilization. The proposed GSA-PSO approach decreases the delay associated with packet transmission and delivery in VANETs and also ensures a good PDR due to the effective channel utilization.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Zhu, X., Champagne, B., & Zhu, W.-P. (2014). Rao test based cooperative spectrum sensing for cognitive radios in non-Gaussian noise. Signal Processing, 97, 183–194.CrossRef Zhu, X., Champagne, B., & Zhu, W.-P. (2014). Rao test based cooperative spectrum sensing for cognitive radios in non-Gaussian noise. Signal Processing, 97, 183–194.CrossRef
2.
Zurück zum Zitat Althunibat, S., Wang, Q., & Granelli, F. (2016). Flexible channel selection mechanism for cognitive radio based last mile smart grid communications. Ad Hoc Networks, 41, 47–56.CrossRef Althunibat, S., Wang, Q., & Granelli, F. (2016). Flexible channel selection mechanism for cognitive radio based last mile smart grid communications. Ad Hoc Networks, 41, 47–56.CrossRef
3.
Zurück zum Zitat Manco-Vásquez, J., Lázaro-Gredilla, M., Ramírez, D., Vía, J., & Santamaría, I. (2014). A Bayesian approach for adaptive multi antenna sensing in cognitive radio networks. Signal Processing, 96, 228–240.CrossRef Manco-Vásquez, J., Lázaro-Gredilla, M., Ramírez, D., Vía, J., & Santamaría, I. (2014). A Bayesian approach for adaptive multi antenna sensing in cognitive radio networks. Signal Processing, 96, 228–240.CrossRef
4.
Zurück zum Zitat Rajasekharan, J., & Koivunen, V. (2015). Cooperative game-theoretic approach to spectrum sharing in cognitive radios. Signal Processing, 106, 15–29.CrossRef Rajasekharan, J., & Koivunen, V. (2015). Cooperative game-theoretic approach to spectrum sharing in cognitive radios. Signal Processing, 106, 15–29.CrossRef
5.
Zurück zum Zitat Zheng, J., Yang, P., Luo, J., Liu, Q., & Li, Yu. (2016). Per-user throughput analysis for secondary users in multi-hop cognitive radio networks. Computer Networks, 106, 1–12.CrossRef Zheng, J., Yang, P., Luo, J., Liu, Q., & Li, Yu. (2016). Per-user throughput analysis for secondary users in multi-hop cognitive radio networks. Computer Networks, 106, 1–12.CrossRef
6.
Zurück zum Zitat Althunibat, S., Di Renzo, M., & Granelli, F. (2014). Cooperative spectrum sensing for cognitive radio networks under limited time constraints. Computer Communications, 43, 55–63.CrossRef Althunibat, S., Di Renzo, M., & Granelli, F. (2014). Cooperative spectrum sensing for cognitive radio networks under limited time constraints. Computer Communications, 43, 55–63.CrossRef
7.
Zurück zum Zitat Traore, Samba, Aziz, Babar, Le Guennec, Daniel, & Louet, Yves. (2015). Adaptive non-uniform sampling of sparse signals for Green Cognitive Radio. Computers & Electrical Engineering, 52, 1–13. Traore, Samba, Aziz, Babar, Le Guennec, Daniel, & Louet, Yves. (2015). Adaptive non-uniform sampling of sparse signals for Green Cognitive Radio. Computers & Electrical Engineering, 52, 1–13.
8.
Zurück zum Zitat Singha, A. K., & Singh, A. K. (2016). Range-based primary user localization in cognitive radio networks. Procedia Computer Science, 93, 199–206.CrossRef Singha, A. K., & Singh, A. K. (2016). Range-based primary user localization in cognitive radio networks. Procedia Computer Science, 93, 199–206.CrossRef
9.
Zurück zum Zitat Tang, M., & Xin, Y. (2016). Energy efficient power allocation in cognitive radio network using coevolution chaotic particle swarm optimization. Computer Networks, 100, 1–11.CrossRef Tang, M., & Xin, Y. (2016). Energy efficient power allocation in cognitive radio network using coevolution chaotic particle swarm optimization. Computer Networks, 100, 1–11.CrossRef
10.
Zurück zum Zitat Jing, W. U., Gang, L., & Hong, J. I. (2014). Joint power and spectrum allocation in multi-hop cognitive radio networks. The Journal of China Universities of Posts and Telecommunications, 21(2), 9–14.CrossRef Jing, W. U., Gang, L., & Hong, J. I. (2014). Joint power and spectrum allocation in multi-hop cognitive radio networks. The Journal of China Universities of Posts and Telecommunications, 21(2), 9–14.CrossRef
11.
Zurück zum Zitat Khasawneh, M., Alrabaee, S., Agarwal, A., Goel, N., & Zaman, M. (2016). Power trading in cognitive radio networks. Journal of Network and Computer Applications, 65, 155–166.CrossRef Khasawneh, M., Alrabaee, S., Agarwal, A., Goel, N., & Zaman, M. (2016). Power trading in cognitive radio networks. Journal of Network and Computer Applications, 65, 155–166.CrossRef
12.
Zurück zum Zitat Das, Deepa, & Das, Susmita. (2016). Optimal resource allocation for soft decision fusion-based cooperative spectrum sensing in cognitive radio networks. Computers and Electrical Engineering, 52, 1–17.CrossRef Das, Deepa, & Das, Susmita. (2016). Optimal resource allocation for soft decision fusion-based cooperative spectrum sensing in cognitive radio networks. Computers and Electrical Engineering, 52, 1–17.CrossRef
13.
Zurück zum Zitat Shahid, M. I. B., Kamruzzaman, J., & Hassa, M. R. (2015). Modeling multiuser spectrum allocation for cognitive radio networks. Computers and Electrical Engineering, 52, 1–18. Shahid, M. I. B., Kamruzzaman, J., & Hassa, M. R. (2015). Modeling multiuser spectrum allocation for cognitive radio networks. Computers and Electrical Engineering, 52, 1–18.
14.
Zurück zum Zitat Farooqi, M. Z., Tabassum, S. M., Rehmani, M. H., & Saleem, Y. (2014). A survey on network coding: From traditional wireless networks to emerging cognitive radio networks. Journal of Network and Computer Applications, 46, 166–181.CrossRef Farooqi, M. Z., Tabassum, S. M., Rehmani, M. H., & Saleem, Y. (2014). A survey on network coding: From traditional wireless networks to emerging cognitive radio networks. Journal of Network and Computer Applications, 46, 166–181.CrossRef
15.
Zurück zum Zitat Stephan, T., & Joseph, K. S. (2016). Cognitive radio assisted MMPR-OLSR WITH GSA-PSO routing for vehicular sensor networks. Procedia Computer Science, 89, 271–282.CrossRef Stephan, T., & Joseph, K. S. (2016). Cognitive radio assisted MMPR-OLSR WITH GSA-PSO routing for vehicular sensor networks. Procedia Computer Science, 89, 271–282.CrossRef
16.
Zurück zum Zitat Rawata, P., Singh, K. D., & Bonnin, J. M. (2016). Cognitive radio for M2M and internet of things: A survey. Computer Communications, 94, 1–35.CrossRef Rawata, P., Singh, K. D., & Bonnin, J. M. (2016). Cognitive radio for M2M and internet of things: A survey. Computer Communications, 94, 1–35.CrossRef
17.
Zurück zum Zitat Dung, L. T., Hieu, T. D., & Choi, S.-G. (2016). Simulation modeling and analysis of the hop count distribution in cognitive radio ad-hoc networks with shadow fading. Simulation Modelling Practice and Theory, 69, 43–54.CrossRef Dung, L. T., Hieu, T. D., & Choi, S.-G. (2016). Simulation modeling and analysis of the hop count distribution in cognitive radio ad-hoc networks with shadow fading. Simulation Modelling Practice and Theory, 69, 43–54.CrossRef
18.
Zurück zum Zitat Salahdine, Fatima, Kaabouch, Naima, & El Ghazi, Hassan. (2016). A survey on compressive sensing techniques for cognitive radio networks. Physical Communication, 20, 1–21.CrossRef Salahdine, Fatima, Kaabouch, Naima, & El Ghazi, Hassan. (2016). A survey on compressive sensing techniques for cognitive radio networks. Physical Communication, 20, 1–21.CrossRef
19.
Zurück zum Zitat Khan, U. U., Dilshad, N., Rehmani, M. H., & Umer, T. (2016). Fairness in cognitive radio networks: models, measurement methods, applications, and future research directions. Journal of Network and Computer Applications, 73, 12–26.CrossRef Khan, U. U., Dilshad, N., Rehmani, M. H., & Umer, T. (2016). Fairness in cognitive radio networks: models, measurement methods, applications, and future research directions. Journal of Network and Computer Applications, 73, 12–26.CrossRef
20.
Zurück zum Zitat Wang, L., Zhou, Z., & Wei, W. (2016). Game theory-based model for maximizing SSP utility in cognitive radio networks. Computer Communications, 86, 29–39.CrossRef Wang, L., Zhou, Z., & Wei, W. (2016). Game theory-based model for maximizing SSP utility in cognitive radio networks. Computer Communications, 86, 29–39.CrossRef
21.
Zurück zum Zitat Amini, M. R., Mahdavi, M., & Omidi, M. J. (2016). Analysis of a multi-user cognitive radio network considering primary users return. Computers & Electrical Engineering, 53, 73–88.CrossRef Amini, M. R., Mahdavi, M., & Omidi, M. J. (2016). Analysis of a multi-user cognitive radio network considering primary users return. Computers & Electrical Engineering, 53, 73–88.CrossRef
22.
Zurück zum Zitat Amjad, M. F., Chatterjee, M., & Zou, C. C. (2016). Coexistence in heterogeneous spectrum through distributed correlated equilibrium in cognitive radio networks. Computer Networks, 98, 109–122.CrossRef Amjad, M. F., Chatterjee, M., & Zou, C. C. (2016). Coexistence in heterogeneous spectrum through distributed correlated equilibrium in cognitive radio networks. Computer Networks, 98, 109–122.CrossRef
23.
Zurück zum Zitat Joe, M. M., & Ramakrishnan, B. (2016). Review of vehicular ad hoc network communication models including WVANET (Web VANET) model and WVANET future research directions. Wireless Networks, 22(7), 2369–2386.CrossRef Joe, M. M., & Ramakrishnan, B. (2016). Review of vehicular ad hoc network communication models including WVANET (Web VANET) model and WVANET future research directions. Wireless Networks, 22(7), 2369–2386.CrossRef
24.
Zurück zum Zitat Joe, M. M., & Ramakrishnan, B. (2017). Novel authentication mechanism for checking node reliability in web vehicular ad hoc network. International Journal of Wireless and Mobile Computing, 13(2), 87–96.CrossRef Joe, M. M., & Ramakrishnan, B. (2017). Novel authentication mechanism for checking node reliability in web vehicular ad hoc network. International Journal of Wireless and Mobile Computing, 13(2), 87–96.CrossRef
25.
Zurück zum Zitat Joe, M. M., Shaji, R. S., & Kumar, K. A. (2013). Establishing inter vehicle wireless communication in VANET and preventing it from hackers. International Journal of Computer Network and Information Security, 5(8), 55.CrossRef Joe, M. M., Shaji, R. S., & Kumar, K. A. (2013). Establishing inter vehicle wireless communication in VANET and preventing it from hackers. International Journal of Computer Network and Information Security, 5(8), 55.CrossRef
26.
Zurück zum Zitat Ramakrishan, B., Joe, M. M., & Nishanth, R. B. (2014). Modeling and simulation of efficient cluster based Manhattan Mobility model for vehicular communication. Journal of Emerging Technologies in Web Intelligence, 6(2), 253–261.CrossRef Ramakrishan, B., Joe, M. M., & Nishanth, R. B. (2014). Modeling and simulation of efficient cluster based Manhattan Mobility model for vehicular communication. Journal of Emerging Technologies in Web Intelligence, 6(2), 253–261.CrossRef
27.
Zurück zum Zitat Sathiamoorthy, J., & Ramakrishnan, B. (2017). A competent three-tier fuzzy cluster algorithm for enhanced data transmission in cluster EAACK MANETs. Soft Computing., 22, 6545–6565.CrossRef Sathiamoorthy, J., & Ramakrishnan, B. (2017). A competent three-tier fuzzy cluster algorithm for enhanced data transmission in cluster EAACK MANETs. Soft Computing., 22, 6545–6565.CrossRef
29.
Zurück zum Zitat Maslekar, N., Mouzna, J., Boussedjra, M., & Labiod, H. (2013). CATS: An adaptive traffic signal system based on car-to-car communication. Journal of Network and Computer Applications, 36, 1308–1315.CrossRef Maslekar, N., Mouzna, J., Boussedjra, M., & Labiod, H. (2013). CATS: An adaptive traffic signal system based on car-to-car communication. Journal of Network and Computer Applications, 36, 1308–1315.CrossRef
30.
Zurück zum Zitat Bilal, S. M., Bernardos, C. J., & Guerrero, C. (2013). Position-based routing in vehicular networks: A survey. Journal of Network and Computer Applications, 36, 685–697.CrossRef Bilal, S. M., Bernardos, C. J., & Guerrero, C. (2013). Position-based routing in vehicular networks: A survey. Journal of Network and Computer Applications, 36, 685–697.CrossRef
31.
Zurück zum Zitat Chim, T. W., Yiu, S. M., Hui, L. C. K., & Li, V. O. K. (2013). VANET-based secure taxi service. Ad Hoc Networks, 11, 2381–2390.CrossRef Chim, T. W., Yiu, S. M., Hui, L. C. K., & Li, V. O. K. (2013). VANET-based secure taxi service. Ad Hoc Networks, 11, 2381–2390.CrossRef
32.
Zurück zum Zitat Ramakrishnan, B., Rajesh, R. S., & Shaji, R. S. (2011). CBVANET: A cluster based vehicular adhoc network model for simple highway communication. International Journal of Advanced Networking and Applications., 2(4), 755–761. Ramakrishnan, B., Rajesh, R. S., & Shaji, R. S. (2011). CBVANET: A cluster based vehicular adhoc network model for simple highway communication. International Journal of Advanced Networking and Applications., 2(4), 755–761.
33.
Zurück zum Zitat Ramakrishnan, B., Rajesh, R. S., & Shaji, R. S. (2010). Performance analysis of 802.11 and 802.11p in cluster based simple highway model. International Journal of Computer Science and Information Technologies, 1(5), 420–426. Ramakrishnan, B., Rajesh, R. S., & Shaji, R. S. (2010). Performance analysis of 802.11 and 802.11p in cluster based simple highway model. International Journal of Computer Science and Information Technologies, 1(5), 420–426.
34.
Zurück zum Zitat Ramakrishnan, B. (2012). Performance analysis of AODV routing protocol in vehicular ad hoc network service discovery architecture. ARPN Journal of Systems and Software-, 2(2), 65–72. Ramakrishnan, B. (2012). Performance analysis of AODV routing protocol in vehicular ad hoc network service discovery architecture. ARPN Journal of Systems and Software-, 2(2), 65–72.
35.
Zurück zum Zitat Ramakrishnan, B. (2013). Analysis of Manhattan mobility model without RSUs. IOSR Journal of Computer Engineering (IOSR-JCE), 9(5), 82–90. (e-ISSN: 2278-0661, p- ISSN: 2278-8727). Ramakrishnan, B. (2013). Analysis of Manhattan mobility model without RSUs. IOSR Journal of Computer Engineering (IOSR-JCE), 9(5), 82–90. (e-ISSN: 2278-0661, p- ISSN: 2278-8727).
38.
Zurück zum Zitat Sathiamoorthy, J., & Ramakrishnan, B. (2016). Energy and delay efficient dynamic cluster formation using improved ant colony optimization algorithm in EAACK MANETs. Wireless Personal Communication, 95, 1–122. Sathiamoorthy, J., & Ramakrishnan, B. (2016). Energy and delay efficient dynamic cluster formation using improved ant colony optimization algorithm in EAACK MANETs. Wireless Personal Communication, 95, 1–122.
39.
Zurück zum Zitat Sathiamoorthy, J., & Ramakrishnan, B. (2015). Energy and delay efficient dynamic cluster formation using hybrid AGA with FACO in EAACK. Wireless Networks, 23, 1–15. Sathiamoorthy, J., & Ramakrishnan, B. (2015). Energy and delay efficient dynamic cluster formation using hybrid AGA with FACO in EAACK. Wireless Networks, 23, 1–15.
40.
Zurück zum Zitat Sathiamoorthy, J., Ramakrishnan, B., & Usha, M. (2015). Design of a competent broadcast algorithm for reliable transmission in CEAACK MANETs. Journal of Network Communications and Emerging Technologies, 5(1), 144–151. Sathiamoorthy, J., Ramakrishnan, B., & Usha, M. (2015). Design of a competent broadcast algorithm for reliable transmission in CEAACK MANETs. Journal of Network Communications and Emerging Technologies, 5(1), 144–151.
Metadaten
Titel
An Enhanced MPR OLSR Protocol for Efficient Node Selection Process in Cognitive Radio Based VANET
verfasst von
M. Usha
B. Ramakrishnan
Publikationsdatum
18.02.2019
Verlag
Springer US
Erschienen in
Wireless Personal Communications / Ausgabe 2/2019
Print ISSN: 0929-6212
Elektronische ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-019-06189-1

Weitere Artikel der Ausgabe 2/2019

Wireless Personal Communications 2/2019 Zur Ausgabe

Neuer Inhalt