Skip to main content
Erschienen in: Wireless Personal Communications 1/2021

02.01.2021

Influence of Clamor on the Transmission of Worms in Remote Sensor Network

verfasst von: R. Geetha, V. Madhusudanan, M. N. Srinivas

Erschienen in: Wireless Personal Communications | Ausgabe 1/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Wireless Sensor Network (WSN) with remote sensing capability is gaining popularity in many of the real time applications such as military, healthcare, environment, home and other commercial applications.WSN is typically composed of various components such as sensor node, relay node, cluster head, gateway, base station. Such a critical network is vulnerable to most dangerous threats caused by worms towards the integrity and confidentiality of information passed through it. The study of the influence of clamor in propagation of potential of worm in WSN is of more significance. In this paper, a logical model is proposed that is reliant on pandemic theory. It is an improvement of the SIRS, SEIS and models. We propose an altered SEIRS (Susceptible-Exposed-Infectious-Recovered-Susceptible) model with the added substance background noise that overcomes the drawbacks of the existing models. The close by adequacy of the model has been affirmed using Lyapunov’s work. We similarly address the effect of node fluctuations in the model through numerical simulations that is carried out to prove that our proposed system is mean square stable and resistance against fluctuations with respect to the spread of worms.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Geetha, R., Suntheya, A. K., & Umarani, G. (2020). Cloud integrated IoT enabled sensor network security: research issues and solutions. Wireless Personal Communications, 113, 747–771.CrossRef Geetha, R., Suntheya, A. K., & Umarani, G. (2020). Cloud integrated IoT enabled sensor network security: research issues and solutions. Wireless Personal Communications, 113, 747–771.CrossRef
2.
Zurück zum Zitat Hu, F., Li, S., Xue, T., & Li, G. (2012). Design and analysis of low-power body area networks based on biomedical signals. International Journal of Electcs, 99(6), 811–822.CrossRef Hu, F., Li, S., Xue, T., & Li, G. (2012). Design and analysis of low-power body area networks based on biomedical signals. International Journal of Electcs, 99(6), 811–822.CrossRef
3.
Zurück zum Zitat Geetha, R., Madhusudhanan, V., Padmavathy, T., & Lallithasree, A. (2019). A light weight secure communication scheme for wireless sensor networks. Wireless Personal Communications, 108, 1957–1976.CrossRef Geetha, R., Madhusudhanan, V., Padmavathy, T., & Lallithasree, A. (2019). A light weight secure communication scheme for wireless sensor networks. Wireless Personal Communications, 108, 1957–1976.CrossRef
4.
Zurück zum Zitat Kumar, V., Dhok, S. B., Tripathi, R., & Tiwari, S. (2017). Cluster size optimization with Tunable Elfes sensing model for single and multi-hop wireless sensor networks. International Journal of Electronics, 104(2), 312–327.CrossRef Kumar, V., Dhok, S. B., Tripathi, R., & Tiwari, S. (2017). Cluster size optimization with Tunable Elfes sensing model for single and multi-hop wireless sensor networks. International Journal of Electronics, 104(2), 312–327.CrossRef
5.
Zurück zum Zitat LaSalle, J. P. (1976). The stability of dynamical systems, CBMS-NSF Reg. In Conference series in applied mathematics, SIAM, Philadelphia. LaSalle, J. P. (1976). The stability of dynamical systems, CBMS-NSF Reg. In Conference series in applied mathematics, SIAM, Philadelphia.
6.
Zurück zum Zitat Mishra, B. K., & Saini, D. (2007). Mathematical models on computer viruses. Applied Mathematics and Computation, 187(2), 929–936.MathSciNetCrossRef Mishra, B. K., & Saini, D. (2007). Mathematical models on computer viruses. Applied Mathematics and Computation, 187(2), 929–936.MathSciNetCrossRef
7.
Zurück zum Zitat Zheng, H., Li, D., & Gao, Z. (2006, August). An epidemic model of mobile phone virus. In 2006 first international symposium on pervasive computing and applications (pp. 1–5). IEEE. Zheng, H., Li, D., & Gao, Z. (2006, August). An epidemic model of mobile phone virus. In 2006 first international symposium on pervasive computing and applications (pp. 1–5). IEEE.
8.
Zurück zum Zitat MadhuSudanan, V., & Geetha, R. (2020). Dynamics of epidemic computer virus spreading model with delays. Wireless Personal Communications, 115(3), 2047–2061.CrossRef MadhuSudanan, V., & Geetha, R. (2020). Dynamics of epidemic computer virus spreading model with delays. Wireless Personal Communications, 115(3), 2047–2061.CrossRef
9.
Zurück zum Zitat Van den Driessche, P., & Watmough, J. (2002). Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Mathematical Biosciences, 180(1–2), 29–48.MathSciNetCrossRef Van den Driessche, P., & Watmough, J. (2002). Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Mathematical Biosciences, 180(1–2), 29–48.MathSciNetCrossRef
10.
Zurück zum Zitat Zhang, T., Yang, L. X., Yang, X., Wu, Y., & Tang, Y. Y. (2017). Dynamic malware containment under an epidemic model with alert. Physica A: Statistical Mechanics and its Applications, 470, 249–260.MathSciNetCrossRef Zhang, T., Yang, L. X., Yang, X., Wu, Y., & Tang, Y. Y. (2017). Dynamic malware containment under an epidemic model with alert. Physica A: Statistical Mechanics and its Applications, 470, 249–260.MathSciNetCrossRef
11.
Zurück zum Zitat Mishra, B. K., & Jha, N. (2007). Fixed period of temporary immunity after run of anti-malicious software on computer nodes. Applied Mathematics and Computation, 190(2), 1207–1212.CrossRef Mishra, B. K., & Jha, N. (2007). Fixed period of temporary immunity after run of anti-malicious software on computer nodes. Applied Mathematics and Computation, 190(2), 1207–1212.CrossRef
12.
Zurück zum Zitat Mishra, B. K., Nayak, P. K., & Jha, N. (2009). Effect of quarantine nodes in SEQIAmS model for the transmission of malicious objects in computer network. International Journal of Mathematical Modeling, Simulation and Applications, 2(1), 102–113. Mishra, B. K., Nayak, P. K., & Jha, N. (2009). Effect of quarantine nodes in SEQIAmS model for the transmission of malicious objects in computer network. International Journal of Mathematical Modeling, Simulation and Applications, 2(1), 102–113.
13.
Zurück zum Zitat Byun, H., & So, J. (2015). Node scheduling control inspired by epidemic theory for data dissemination in wireless sensor-actuator networks with delay constraints. IEEE Transactions on Wireless Communications, 15(3), 1794–1807.CrossRef Byun, H., & So, J. (2015). Node scheduling control inspired by epidemic theory for data dissemination in wireless sensor-actuator networks with delay constraints. IEEE Transactions on Wireless Communications, 15(3), 1794–1807.CrossRef
14.
Zurück zum Zitat Ojha, R. P., Srivastava, P. K., & Sanyal, G. (2019). Improving wireless sensor networks performance through epidemic model. International Journal of Electronics, 106(6), 862–879.CrossRef Ojha, R. P., Srivastava, P. K., & Sanyal, G. (2019). Improving wireless sensor networks performance through epidemic model. International Journal of Electronics, 106(6), 862–879.CrossRef
15.
Zurück zum Zitat Nwokoye, C., & Umeh, I. (2018). Analytic-agent cyber dynamical systems analysis and design method for modeling spatio-temporal factors of malware propagation in wireless sensor networks. MethodsX, 5, 1373–1398.CrossRef Nwokoye, C., & Umeh, I. (2018). Analytic-agent cyber dynamical systems analysis and design method for modeling spatio-temporal factors of malware propagation in wireless sensor networks. MethodsX, 5, 1373–1398.CrossRef
16.
Zurück zum Zitat De, P., Liu, Y., & Das, S. K. (2009). Deployment-aware modeling of node compromise spread in wireless sensor networks using epidemic theory. ACM Transactions on Sensor Networks (TOSN), 5(3), 1–33.CrossRef De, P., Liu, Y., & Das, S. K. (2009). Deployment-aware modeling of node compromise spread in wireless sensor networks using epidemic theory. ACM Transactions on Sensor Networks (TOSN), 5(3), 1–33.CrossRef
17.
Zurück zum Zitat De, P., Liu, Y., & Das, S. K. (2008). An epidemic theoretic framework for vulnerability analysis of broadcast protocols in wireless sensor networks. IEEE Transactions on Mobile Computing, 8(3), 413–425.CrossRef De, P., Liu, Y., & Das, S. K. (2008). An epidemic theoretic framework for vulnerability analysis of broadcast protocols in wireless sensor networks. IEEE Transactions on Mobile Computing, 8(3), 413–425.CrossRef
18.
Zurück zum Zitat Gelenbe, E., Kaptan, V., & Wang, Y. (2004). Biological metaphors for agent behavior. In International symposium on computer and information sciences (pp. 667–675). Springer, Heidelberg. Gelenbe, E., Kaptan, V., & Wang, Y. (2004). Biological metaphors for agent behavior. In International symposium on computer and information sciences (pp. 667–675). Springer, Heidelberg.
19.
Zurück zum Zitat Madar, N., Kalisky, T., Cohen, R., Ben-avraham, D., & Havlin, S. (2004). Immunization and epidemic dynamics in complex networks. The European Physical Journal B, 38(2), 269–276.CrossRef Madar, N., Kalisky, T., Cohen, R., Ben-avraham, D., & Havlin, S. (2004). Immunization and epidemic dynamics in complex networks. The European Physical Journal B, 38(2), 269–276.CrossRef
20.
Zurück zum Zitat Singh, A., Awasthi, A. K., Singh, K., & Srivastava, P. K. (2018). Modeling and analysis of worm propagation in wireless sensor networks. Wireless Personal Communications, 98(3), 2535–2551.CrossRef Singh, A., Awasthi, A. K., Singh, K., & Srivastava, P. K. (2018). Modeling and analysis of worm propagation in wireless sensor networks. Wireless Personal Communications, 98(3), 2535–2551.CrossRef
21.
Zurück zum Zitat Mishra, B. K., & Keshri, N. (2013). Mathematical model on the transmission of worms in wireless sensor network. Applied Mathematical Modelling, 37(6), 4103–4111.MathSciNetCrossRef Mishra, B. K., & Keshri, N. (2013). Mathematical model on the transmission of worms in wireless sensor network. Applied Mathematical Modelling, 37(6), 4103–4111.MathSciNetCrossRef
22.
Zurück zum Zitat Haghighi, M. S., Wen, S., Xiang, Y., Quinn, B., & Zhou, W. (2016). On the race of worms and patches: Modeling the spread of information in wireless sensor networks. IEEE Transactions on Information Forensics and Security, 11(12), 2854–2865.CrossRef Haghighi, M. S., Wen, S., Xiang, Y., Quinn, B., & Zhou, W. (2016). On the race of worms and patches: Modeling the spread of information in wireless sensor networks. IEEE Transactions on Information Forensics and Security, 11(12), 2854–2865.CrossRef
23.
Zurück zum Zitat Ho, J. W., & Wright, M. (2017). Distributed detection of sensor worms using sequential analysis and remote software attestations. IEEE Access, 5, 680–695.CrossRef Ho, J. W., & Wright, M. (2017). Distributed detection of sensor worms using sequential analysis and remote software attestations. IEEE Access, 5, 680–695.CrossRef
24.
Zurück zum Zitat Feng, L., Song, L., Zhao, Q., & Wang, H. (2015). Modeling and stability analysis of worm propagation in wireless sensor network. In Mathematical problems in engineering, 2015. Feng, L., Song, L., Zhao, Q., & Wang, H. (2015). Modeling and stability analysis of worm propagation in wireless sensor network. In Mathematical problems in engineering, 2015.
25.
Zurück zum Zitat Faghani, M. R., & Nguyen, U. T. (2013). A study of XSS worm propagation and detection mechanisms in online social networks. IEEE Transactions on Information Forensics and Security, 8(11), 1815–1826.CrossRef Faghani, M. R., & Nguyen, U. T. (2013). A study of XSS worm propagation and detection mechanisms in online social networks. IEEE Transactions on Information Forensics and Security, 8(11), 1815–1826.CrossRef
26.
Zurück zum Zitat Ojha, R. P., Srivastava, P. K., Awasthi, S., & Sanyal, G. (2017). Global stability of dynamic model for worm propagation in wireless sensor network. In Proceeding of international conference on intelligent communication, control and devices (pp. 695–704). Springer, Singapore. Ojha, R. P., Srivastava, P. K., Awasthi, S., & Sanyal, G. (2017). Global stability of dynamic model for worm propagation in wireless sensor network. In Proceeding of international conference on intelligent communication, control and devices (pp. 695–704). Springer, Singapore.
27.
Zurück zum Zitat Awasthi, S., Kumar, N., & Srivastava, P. K. (2020). A study of epidemic approach for worm propagation in wireless sensor network. In Intelligent computing in engineering (pp. 315–326). Springer, Singapore. Awasthi, S., Kumar, N., & Srivastava, P. K. (2020). A study of epidemic approach for worm propagation in wireless sensor network. In Intelligent computing in engineering (pp. 315–326). Springer, Singapore.
28.
Zurück zum Zitat Srivastava, A. P., Awasthi, S., Ojha, R. P., Srivastava, P. K., & Katiyar, S. (2016). Stability analysis of SIDR model for worm propagation in wireless sensor network. Indian Journal of Science and Technology, 9(31), 1–5. Srivastava, A. P., Awasthi, S., Ojha, R. P., Srivastava, P. K., & Katiyar, S. (2016). Stability analysis of SIDR model for worm propagation in wireless sensor network. Indian Journal of Science and Technology, 9(31), 1–5.
29.
Zurück zum Zitat Upadhyay, R. K., Kumari, S., & Misra, A. K. (2017). Modeling the virus dynamics in computer network with SVEIR model and nonlinear incident rate. Journal of Applied Mathematics and Computing, 54(1–2), 485–509.MathSciNetCrossRef Upadhyay, R. K., Kumari, S., & Misra, A. K. (2017). Modeling the virus dynamics in computer network with SVEIR model and nonlinear incident rate. Journal of Applied Mathematics and Computing, 54(1–2), 485–509.MathSciNetCrossRef
30.
Zurück zum Zitat Upadhyay, R. K., & Kumari, S. (2018). Bifurcation analysis of an e-epidemic model in wireless sensor network. International Journal of Computer Mathematics, 95(9), 1775–1805.MathSciNetCrossRef Upadhyay, R. K., & Kumari, S. (2018). Bifurcation analysis of an e-epidemic model in wireless sensor network. International Journal of Computer Mathematics, 95(9), 1775–1805.MathSciNetCrossRef
31.
Zurück zum Zitat Chien, E. (2005). Security response: symbos. Mabir: Symantec Corporation. Chien, E. (2005). Security response: symbos. Mabir: Symantec Corporation.
32.
Zurück zum Zitat Kermack, W. O., & McKendrick, A. G. (1927). A contribution to the mathematical theory of epidemics. Proceedings of the Royal Society of London: Series A, Containing papers of a mathematical and physical character, 115(772), 700–721.MATH Kermack, W. O., & McKendrick, A. G. (1927). A contribution to the mathematical theory of epidemics. Proceedings of the Royal Society of London: Series A, Containing papers of a mathematical and physical character, 115(772), 700–721.MATH
33.
Zurück zum Zitat López, M., Peinado, A., & Ortiz, A. (2016). A SEIS model for propagation of random jamming attacks in wireless sensor networks. In International joint conference SOCO’16-CISIS’16-ICEUTE’16 (pp. 668–677). Springer, Cham. López, M., Peinado, A., & Ortiz, A. (2016). A SEIS model for propagation of random jamming attacks in wireless sensor networks. In International joint conference SOCO’16-CISIS’16-ICEUTE’16 (pp. 668–677). Springer, Cham.
34.
Zurück zum Zitat Mishra, B. K., & Saini, D. K. (2007). SEIRS epidemic model with delay for transmission of malicious objects in computer network. Applied Mathematics and Computation, 188(2), 1476–1482.MathSciNetCrossRef Mishra, B. K., & Saini, D. K. (2007). SEIRS epidemic model with delay for transmission of malicious objects in computer network. Applied Mathematics and Computation, 188(2), 1476–1482.MathSciNetCrossRef
35.
Zurück zum Zitat Ojha, R. P., Sanyal, G., Srivastava, P. K., & Sharma, K. (2017). Design and analysis of modified SIQRS model for performance study of wireless sensor network. Scalable Computing: Practice and Experience, 18(3), 229–242. Ojha, R. P., Sanyal, G., Srivastava, P. K., & Sharma, K. (2017). Design and analysis of modified SIQRS model for performance study of wireless sensor network. Scalable Computing: Practice and Experience, 18(3), 229–242.
36.
Zurück zum Zitat Nisbet, R. M., & Gurney, W. (2003). Modelling fluctuating populations: reprint of first edition. Nisbet, R. M., & Gurney, W. (2003). Modelling fluctuating populations: reprint of first edition.
Metadaten
Titel
Influence of Clamor on the Transmission of Worms in Remote Sensor Network
verfasst von
R. Geetha
V. Madhusudanan
M. N. Srinivas
Publikationsdatum
02.01.2021
Verlag
Springer US
Erschienen in
Wireless Personal Communications / Ausgabe 1/2021
Print ISSN: 0929-6212
Elektronische ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-020-08024-4

Weitere Artikel der Ausgabe 1/2021

Wireless Personal Communications 1/2021 Zur Ausgabe

Neuer Inhalt