Skip to main content
Erschienen in: Wireless Personal Communications 2/2022

29.11.2021

A Novel FrWT Based Arrhythmia Detection in ECG Signal Using YWARA and PCA

verfasst von: Varun Gupta, Monika Mittal, Vikas Mittal

Erschienen in: Wireless Personal Communications | Ausgabe 2/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In general, Electrocardiogram (ECG) signal gets corrupted by variety of noise at the time of its acquisition. Unfortunately, these noise tend to mask the crucial information. Consequently, it may endanger life of the subject (patient) due to delayed diagnosis of heart health. In critical situations, proper analysis of ECG signals is very important for correct and timely detection of heart diseases. This situation motivated the present authors to develop an efficient arrhythmia detection algorithm. In this paper, a novel fractional wavelet transform (FrWT), Yule–Walker Autoregressive Analysis (YWARA), and Principal Component Analysis (PCA) are used for preprocessing, feature extraction, and detection, respectively. The type of arrhythmia detected has been interpreted based on variance estimation theory. For performance evaluation, various statistical parameters such as mean square error (MSE), detection accuracy (Acc), & output signal-to-noise ratio (SNR) are used. The proposed algorithm achieved a MSE of 0.1656%, Acc of 99.89%, & output SNR of 25.25 dB for MIT-BIH Arrhythmia database. For complete validation of this proposed work, other databases such as ventricular tachyarrhythmia, MIT-BIH long-term, and atrial fibrillation are also utilized.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Mehta, S.S., Lingayat, N.S. (2008). Detection of P and T-waves in electrocardiogram. World Congress on Engineering and Computer Science (WCECS-2008) pp. 1–6. Mehta, S.S., Lingayat, N.S. (2008). Detection of P and T-waves in electrocardiogram. World Congress on Engineering and Computer Science (WCECS-2008) pp. 1–6.
2.
Zurück zum Zitat Gupta, V., Mittal, M., & Mittal, V. (2019). R-peak detection based chaos analysis of ECG signal. Analog Integrated circuits and Signal Processing, 102, 479–490.CrossRef Gupta, V., Mittal, M., & Mittal, V. (2019). R-peak detection based chaos analysis of ECG signal. Analog Integrated circuits and Signal Processing, 102, 479–490.CrossRef
4.
Zurück zum Zitat Elgendi, M., Jonkman, M., & Boer, F. D. (2009). Improved QRS detection algorithm using dynamic thresholds. International Journal of Hybrid Information Technology, 2(1), 65–80. Elgendi, M., Jonkman, M., & Boer, F. D. (2009). Improved QRS detection algorithm using dynamic thresholds. International Journal of Hybrid Information Technology, 2(1), 65–80.
9.
Zurück zum Zitat Sahoo, S., Biswal, P., Das, T., & Sabut, S. (2016). De-noising of ECG signal and QRS detection using Hilbert transform and adaptive thresholding. Procedia Technology, 25, 68–75.CrossRef Sahoo, S., Biswal, P., Das, T., & Sabut, S. (2016). De-noising of ECG signal and QRS detection using Hilbert transform and adaptive thresholding. Procedia Technology, 25, 68–75.CrossRef
10.
Zurück zum Zitat Martis, R. J., Acharya, U. R., Mandana, K. M., Ray, A. K., & Chakraborty, C. (2012). Application of principal component analysis to ECG signals for automated diagnosis of cardiac health. Journal of Expert Systems with Applications, 39, 11792–11800.CrossRef Martis, R. J., Acharya, U. R., Mandana, K. M., Ray, A. K., & Chakraborty, C. (2012). Application of principal component analysis to ECG signals for automated diagnosis of cardiac health. Journal of Expert Systems with Applications, 39, 11792–11800.CrossRef
12.
Zurück zum Zitat Xingyuan, W., & Juan, M. (2009). Wavelet-based hybrid ECG compression technique. Analog Integrated Circuits and Signal Processing, 59(3), 301–308.CrossRef Xingyuan, W., & Juan, M. (2009). Wavelet-based hybrid ECG compression technique. Analog Integrated Circuits and Signal Processing, 59(3), 301–308.CrossRef
13.
Zurück zum Zitat Rajankar, S. O., & Talbar, S. N. (2019). An electrocardiogram signal compression techniques: A comprehensive review. Analog Integrated Circuits and Signal Processing, 98(1), 59–74.CrossRef Rajankar, S. O., & Talbar, S. N. (2019). An electrocardiogram signal compression techniques: A comprehensive review. Analog Integrated Circuits and Signal Processing, 98(1), 59–74.CrossRef
14.
Zurück zum Zitat Singh, D., Saini, B. S., & Kumar, V. (2008). Heart rate variability—A bibliographical survey. IETE Journal of Research, 54(3), 209–216.CrossRef Singh, D., Saini, B. S., & Kumar, V. (2008). Heart rate variability—A bibliographical survey. IETE Journal of Research, 54(3), 209–216.CrossRef
15.
Zurück zum Zitat Kaur, H., & Rajni, R. (2017). On the detection of cardiac arrhythmia with principal component analysis. Journal of Wireless Personal Communications, 97(4), 5495–5509.CrossRef Kaur, H., & Rajni, R. (2017). On the detection of cardiac arrhythmia with principal component analysis. Journal of Wireless Personal Communications, 97(4), 5495–5509.CrossRef
16.
Zurück zum Zitat Gupta, V., Kanungo, A., Kumar, P., Sharma, A. K., & Gupta, A. (2018). Auto-regressive time frequency analysis (ARTFA) of electrocardiogram (ECG) signal. International Journal of Applied Engineering Research, 13(6), 133–138. Gupta, V., Kanungo, A., Kumar, P., Sharma, A. K., & Gupta, A. (2018). Auto-regressive time frequency analysis (ARTFA) of electrocardiogram (ECG) signal. International Journal of Applied Engineering Research, 13(6), 133–138.
17.
Zurück zum Zitat Addison, P. S. (2005). Wavelet transforms and the ECG: A review. Physiological Measurement, 26, 155–199.CrossRef Addison, P. S. (2005). Wavelet transforms and the ECG: A review. Physiological Measurement, 26, 155–199.CrossRef
18.
Zurück zum Zitat Rawal, K., Saini, B. S., & Saini, I. (2017). Effect of age and postural related changes on cardiac autonomic function in the pre-menopausal and post-menopausal women. International Journal of Medical Engineering and Informatics, 9(4), 299–315.CrossRef Rawal, K., Saini, B. S., & Saini, I. (2017). Effect of age and postural related changes on cardiac autonomic function in the pre-menopausal and post-menopausal women. International Journal of Medical Engineering and Informatics, 9(4), 299–315.CrossRef
19.
Zurück zum Zitat Gupta, V. et al. (2021). ECG signal analysis using CWT, Spectrogram and autoregressive technique. Iran Journal of Computer Science, in press Gupta, V. et al. (2021). ECG signal analysis using CWT, Spectrogram and autoregressive technique. Iran Journal of Computer Science, in press
20.
Zurück zum Zitat Gupta, V., Mittal, M., and Mittal, V. (2022). An efficient AR modeling based electrocardiogram signal analysis for health informatics. International Journal of Medical Engineering and Informatics (IJMEI), in press. Gupta, V., Mittal, M., and Mittal, V. (2022). An efficient AR modeling based electrocardiogram signal analysis for health informatics. International Journal of Medical Engineering and Informatics (IJMEI), in press.
21.
Zurück zum Zitat Mortezaee, M., Mortezaie, Z., & Abolghasemi, V. (2019). An improved SSA-based technique for EMG removal from ECG. IRBM, 40, 62–68.CrossRef Mortezaee, M., Mortezaie, Z., & Abolghasemi, V. (2019). An improved SSA-based technique for EMG removal from ECG. IRBM, 40, 62–68.CrossRef
25.
Zurück zum Zitat Jangra, M., et al. (2020). ECG arrhythmia classification using modified visual geometry group network (mVGGNet). Journal of Intelligent & Fuzzy Systems, 38, 3151–3165.CrossRef Jangra, M., et al. (2020). ECG arrhythmia classification using modified visual geometry group network (mVGGNet). Journal of Intelligent & Fuzzy Systems, 38, 3151–3165.CrossRef
26.
Zurück zum Zitat Dasgupta, H. (2016). Human age recognition by electrocardiogram signal based on artificial neural network. Sensing and Imaging, 17(4), 1–15. Dasgupta, H. (2016). Human age recognition by electrocardiogram signal based on artificial neural network. Sensing and Imaging, 17(4), 1–15.
27.
Zurück zum Zitat Gupta, V., & Mittal, M. (2018). KNN and PCA classifier with autoregressive modelling during different ECG signal interpretation. Procedia Computer Science-Elsevier, 125, 18–24.CrossRef Gupta, V., & Mittal, M. (2018). KNN and PCA classifier with autoregressive modelling during different ECG signal interpretation. Procedia Computer Science-Elsevier, 125, 18–24.CrossRef
29.
Zurück zum Zitat Dohare, A. K., et al. (2014). An efficient new method for the detection of QRS in electrocardiogram. Computers & Electrical Engineering, 40(5), 1717–1730.CrossRef Dohare, A. K., et al. (2014). An efficient new method for the detection of QRS in electrocardiogram. Computers & Electrical Engineering, 40(5), 1717–1730.CrossRef
30.
Zurück zum Zitat Kaur, I., Rajni, R., & Marwaha, A. (2016). ECG signal analysis and arrhythmia detection using wavelet transform. Journal of the Institution of Engineers (India): Series B, 97(4), 499–507.CrossRef Kaur, I., Rajni, R., & Marwaha, A. (2016). ECG signal analysis and arrhythmia detection using wavelet transform. Journal of the Institution of Engineers (India): Series B, 97(4), 499–507.CrossRef
32.
Zurück zum Zitat Sejdic, E., Djurovic, I., Jiang, J., & Stankovic, L. J. (2009). Time-frequency based feature extraction and classification: considering energy concentration as a feature using stockwell transform and related approaches (Vol. 1). VDM Verlag Publishing. Sejdic, E., Djurovic, I., Jiang, J., & Stankovic, L. J. (2009). Time-frequency based feature extraction and classification: considering energy concentration as a feature using stockwell transform and related approaches (Vol. 1). VDM Verlag Publishing.
33.
Zurück zum Zitat Gupta, V., and Mittal, M. (2018). ECG signal analysis: Past, present and future. In: Proc. 8th IEEE Power india international conference (PIICON), 10–12 Dec, 1–6, NIT Kurukshetra, Haryana, India (2018). Gupta, V., and Mittal, M. (2018). ECG signal analysis: Past, present and future. In: Proc. 8th IEEE Power india international conference (PIICON), 10–12 Dec, 1–6, NIT Kurukshetra, Haryana, India (2018).
34.
Zurück zum Zitat Marwaha, P., & Sunkaria, R. K. (2015). Cardiac variability time-series analysis by sample entropy and multiscale entropy. International Journal of Medical Engineering and Informatics, 7(1), 1–14.CrossRef Marwaha, P., & Sunkaria, R. K. (2015). Cardiac variability time-series analysis by sample entropy and multiscale entropy. International Journal of Medical Engineering and Informatics, 7(1), 1–14.CrossRef
35.
Zurück zum Zitat Amar, D., & Abboud, S. (2016). P-wave morphology in focal atrial tachycardia using a 3D numerical model of the heart. International Journal of Medical Engineering and Informatics, 8(3), 263–274.CrossRef Amar, D., & Abboud, S. (2016). P-wave morphology in focal atrial tachycardia using a 3D numerical model of the heart. International Journal of Medical Engineering and Informatics, 8(3), 263–274.CrossRef
36.
Zurück zum Zitat Salman, M. N., Rao, P. T., & Rahman, M. Z. U. (2017). Cardiac signal enhancement using normalised variable step algorithm for remote healthcare monitoring systems. International Journal of Medical Engineering and Informatics, 9(2), 145–161.CrossRef Salman, M. N., Rao, P. T., & Rahman, M. Z. U. (2017). Cardiac signal enhancement using normalised variable step algorithm for remote healthcare monitoring systems. International Journal of Medical Engineering and Informatics, 9(2), 145–161.CrossRef
37.
Zurück zum Zitat Murthy, H. S. N., & Meenakshi, M. (2017). Novel and efficient algorithms for early detection of myocardial ischemia. International Journal of Medical Engineering and Informatics, 9(4), 351–372.CrossRef Murthy, H. S. N., & Meenakshi, M. (2017). Novel and efficient algorithms for early detection of myocardial ischemia. International Journal of Medical Engineering and Informatics, 9(4), 351–372.CrossRef
38.
Zurück zum Zitat Kamath, M.V., Bentley, T., Spaziani, R., Tougas, G., Fallen, E.L., McCartney, N., Runions, J., & Upton, A.R.M. (1996). Time–frequency analysis of heart rate variability signals in patients with autonomic dysfunction. In: International symposium on time–frequency and time-scale analysis (IEEE SP 1996), pp. 373–376 Kamath, M.V., Bentley, T., Spaziani, R., Tougas, G., Fallen, E.L., McCartney, N., Runions, J., & Upton, A.R.M. (1996). Time–frequency analysis of heart rate variability signals in patients with autonomic dysfunction. In: International symposium on time–frequency and time-scale analysis (IEEE SP 1996), pp. 373–376
39.
Zurück zum Zitat Singh, G., Gupta, V., Sekharmantri, A. K., Gupta, A., & Kumar, P. (2010). Real-time online monitoring of electrocardiogram(ECG) using very low cost for developing countries. AIP Conference Proceedings, 1324(1), 251–254.CrossRef Singh, G., Gupta, V., Sekharmantri, A. K., Gupta, A., & Kumar, P. (2010). Real-time online monitoring of electrocardiogram(ECG) using very low cost for developing countries. AIP Conference Proceedings, 1324(1), 251–254.CrossRef
40.
Zurück zum Zitat Qin, S., Ji, Z. (2004). Multi-resolution time-frequency analysis for detection of rhythms of EEG signals. In: 2004 IEEE 11th digital signal processing workshop & IEEE signal processing education workshop (IEEE DSP 2004), pp 338–341 Qin, S., Ji, Z. (2004). Multi-resolution time-frequency analysis for detection of rhythms of EEG signals. In: 2004 IEEE 11th digital signal processing workshop & IEEE signal processing education workshop (IEEE DSP 2004), pp 338–341
41.
Zurück zum Zitat Meireles, A.J.M.D. (2011). ECG denoising based on adaptive signal processing technique. Thesis, Master of Technology in Electronics and Computer Science, Instituto Superior de Engenharia do Porto Portugal Meireles, A.J.M.D. (2011). ECG denoising based on adaptive signal processing technique. Thesis, Master of Technology in Electronics and Computer Science, Instituto Superior de Engenharia do Porto Portugal
42.
Zurück zum Zitat Nayak, C., Saha, S. K., Kar, R., & Mandal, D. (2018). Optimal SSA based wideband digital differentiator design for cardiac QRS complex detection application. International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, 32(2), 1–25. Nayak, C., Saha, S. K., Kar, R., & Mandal, D. (2018). Optimal SSA based wideband digital differentiator design for cardiac QRS complex detection application. International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, 32(2), 1–25.
43.
Zurück zum Zitat Pan, J., & Tompkins, W. J. (1985). A real-time QRS detection algorithm. IEEE Transactions on Biomedical Engineering, 32, 230–236.CrossRef Pan, J., & Tompkins, W. J. (1985). A real-time QRS detection algorithm. IEEE Transactions on Biomedical Engineering, 32, 230–236.CrossRef
44.
Zurück zum Zitat Sharma, A., Patidar, S., Upadhyaya, A., & Acharya, U. R. (2019). Accurate tunable-Q wavelet transform based method for QRS complex detection. Computers & Electrical Engineering, 75, 101–111.CrossRef Sharma, A., Patidar, S., Upadhyaya, A., & Acharya, U. R. (2019). Accurate tunable-Q wavelet transform based method for QRS complex detection. Computers & Electrical Engineering, 75, 101–111.CrossRef
45.
Zurück zum Zitat Nallathambi, G., & Príncipe, J. C. (2014). Integrate and fire pulse train automaton for QRS detection. IEEE Transactions on Biomedical Engineering, 61(2), 317–326.CrossRef Nallathambi, G., & Príncipe, J. C. (2014). Integrate and fire pulse train automaton for QRS detection. IEEE Transactions on Biomedical Engineering, 61(2), 317–326.CrossRef
46.
Zurück zum Zitat Pandit, D., Zhang, L., Liu, C., Chattopadhyay, S., Aslam, N., & Lim, C. P. (2017). A lightweight QRS detector for single lead ECG signals using a max-min difference algorithm. Computer Methods and Programs in Biomedicine, 144, 61–75.CrossRef Pandit, D., Zhang, L., Liu, C., Chattopadhyay, S., Aslam, N., & Lim, C. P. (2017). A lightweight QRS detector for single lead ECG signals using a max-min difference algorithm. Computer Methods and Programs in Biomedicine, 144, 61–75.CrossRef
47.
Zurück zum Zitat Yakut, O., & Bolat, E. D. (2018). An improved QRS complex detection method having low computational load. Biomedical Signal Processing and Control, 42, 230–241.CrossRef Yakut, O., & Bolat, E. D. (2018). An improved QRS complex detection method having low computational load. Biomedical Signal Processing and Control, 42, 230–241.CrossRef
48.
Zurück zum Zitat Yazdani, S., & Vesin, J. M. (2016). Extraction of QRS fiducial points from the ECG using adaptive mathematical morphology. Digital Signal Processing, 56, 100–109.MathSciNetCrossRef Yazdani, S., & Vesin, J. M. (2016). Extraction of QRS fiducial points from the ECG using adaptive mathematical morphology. Digital Signal Processing, 56, 100–109.MathSciNetCrossRef
49.
Zurück zum Zitat Yazdani, A., Fallet, S., & Vasin, J. M. (2018). A novel short-term event extraction algorithm for biomedical signals. IEEE Transactions on Biomedical Engineering, 65(4), 754–762.CrossRef Yazdani, A., Fallet, S., & Vasin, J. M. (2018). A novel short-term event extraction algorithm for biomedical signals. IEEE Transactions on Biomedical Engineering, 65(4), 754–762.CrossRef
50.
Zurück zum Zitat Biswal, B. (2017). ECG signal analysis using modified S-transform. Healthcare Technology Letters, 4(2), 68–72.CrossRef Biswal, B. (2017). ECG signal analysis using modified S-transform. Healthcare Technology Letters, 4(2), 68–72.CrossRef
52.
Zurück zum Zitat V. Gupta, et al., “Attractor plot as an emerging tool in ECG signal processing for improved health informatics,” International Conference on Future Technologies 2020 (ICOFT 2020) in Manufacturing, Automation, Design and Energy (MADE@NITPY), National Institute of Technology Puducherry Karaikal, India, December 28–30, 2020. V. Gupta, et al., “Attractor plot as an emerging tool in ECG signal processing for improved health informatics,” International Conference on Future Technologies 2020 (ICOFT 2020) in Manufacturing, Automation, Design and Energy (MADE@NITPY), National Institute of Technology Puducherry Karaikal, India, December 28–30, 2020.
53.
Zurück zum Zitat Gupta, V. et al. (2020). Spectrogram as an emerging tool in ECG signal processing. In: International conference on future technologies 2020 (ICOFT 2020) in manufacturing, automation, design and energy (MADE@NITPY), National Institute of Technology Puducherry Karaikal, India, 28–30 Dec 2020. Gupta, V. et al. (2020). Spectrogram as an emerging tool in ECG signal processing. In: International conference on future technologies 2020 (ICOFT 2020) in manufacturing, automation, design and energy (MADE@NITPY), National Institute of Technology Puducherry Karaikal, India, 28–30 Dec 2020.
54.
Zurück zum Zitat Gupta, V. et al. (2021). ECG signal analysis using emerging tools in current scenario of health informatics. In: 11th International conference on cloud computing, data science & engineering (Confluence 2021), Amity University Noida, India, 28–29 Jan 2021 Gupta, V. et al. (2021). ECG signal analysis using emerging tools in current scenario of health informatics. In: 11th International conference on cloud computing, data science & engineering (Confluence 2021), Amity University Noida, India, 28–29 Jan 2021
56.
Zurück zum Zitat Das, M., & Ari, S. (2013). Analysis of ECG signal denoising method based on S-transform. IRBM, 34(6), 362–370.CrossRef Das, M., & Ari, S. (2013). Analysis of ECG signal denoising method based on S-transform. IRBM, 34(6), 362–370.CrossRef
57.
Zurück zum Zitat Luz, E. J. S., Schwartz, W. R., Chávez, G. C., & Menotti, D. (2016). ECG-based heartbeat classification for arrhythmiadetection: A survey. Computer Methods and Programs in Biomedicine, 127, 144–164.CrossRef Luz, E. J. S., Schwartz, W. R., Chávez, G. C., & Menotti, D. (2016). ECG-based heartbeat classification for arrhythmiadetection: A survey. Computer Methods and Programs in Biomedicine, 127, 144–164.CrossRef
60.
Zurück zum Zitat Gupta, V., & Mittal, M. (2018). Electrocardiogram signals interpretation using Chaos theory. Journal of Advanced Research in Dynamical and Control Systems, 10(2), 2392–2397. Gupta, V., & Mittal, M. (2018). Electrocardiogram signals interpretation using Chaos theory. Journal of Advanced Research in Dynamical and Control Systems, 10(2), 2392–2397.
61.
Zurück zum Zitat Gupta, V., & Mittal, M. (2019). A novel method of cardiac arrhythmia detection in electrocardiogram signal. International Journal of Medical Engineering and Informatics, 12(5), 489–499.CrossRef Gupta, V., & Mittal, M. (2019). A novel method of cardiac arrhythmia detection in electrocardiogram signal. International Journal of Medical Engineering and Informatics, 12(5), 489–499.CrossRef
63.
Zurück zum Zitat Rai, H. M., Trivedi, A., Chatterjee, K., & Shukla, S. (2014). R-Peak detection using Daubechies wavelet and ECG signal classification using radial basis function neural network. Journal of The Institution of Engineers (India): Series B, 95(1), 63–71.CrossRef Rai, H. M., Trivedi, A., Chatterjee, K., & Shukla, S. (2014). R-Peak detection using Daubechies wavelet and ECG signal classification using radial basis function neural network. Journal of The Institution of Engineers (India): Series B, 95(1), 63–71.CrossRef
64.
Zurück zum Zitat Bhatnagar, G., Wua, Q. M. J., & Raman, B. (2013). Discrete fractional wavelet transform and its application to multiple encryption. Information Sciences, 223, 297–316.MathSciNetMATHCrossRef Bhatnagar, G., Wua, Q. M. J., & Raman, B. (2013). Discrete fractional wavelet transform and its application to multiple encryption. Information Sciences, 223, 297–316.MathSciNetMATHCrossRef
65.
Zurück zum Zitat Ouelli, A., Elhadadi, B., Aissaoui, H., & Bouikhalene, B. (2012). AR modeling for cardiac arrhythmia classification using MLP neural networks. International Journal of Computer Applications, 47(24), 44–51.CrossRef Ouelli, A., Elhadadi, B., Aissaoui, H., & Bouikhalene, B. (2012). AR modeling for cardiac arrhythmia classification using MLP neural networks. International Journal of Computer Applications, 47(24), 44–51.CrossRef
66.
Zurück zum Zitat Arnold, M., Miltner, W. H. R., Witte, H., Bauer, R., & Braun, C. (1998). Adaptive AR modeling of nonstationary time series by means of Kalman filtering. IEEE Transactions on Biomedical Engineering, 45(5), 553–562.CrossRef Arnold, M., Miltner, W. H. R., Witte, H., Bauer, R., & Braun, C. (1998). Adaptive AR modeling of nonstationary time series by means of Kalman filtering. IEEE Transactions on Biomedical Engineering, 45(5), 553–562.CrossRef
67.
Zurück zum Zitat Chawla, M. P. S. (2008). Segment classification of ECG data and construction of scatter plots using principal component analysis. Journal of Mechanics in Medicine and Biology, 8(3), 421–458.CrossRef Chawla, M. P. S. (2008). Segment classification of ECG data and construction of scatter plots using principal component analysis. Journal of Mechanics in Medicine and Biology, 8(3), 421–458.CrossRef
68.
Zurück zum Zitat Physionet database/MITBIH Arrhythmia database. Accessed 22 Nov 2017 Physionet database/MITBIH Arrhythmia database. Accessed 22 Nov 2017
69.
Zurück zum Zitat Slimane, Z. E. H., & Ali, A. N. (2010). QRS complex detection using empirical mode decomposition. Digital Signal Processing, 20(4), 1221–1228.CrossRef Slimane, Z. E. H., & Ali, A. N. (2010). QRS complex detection using empirical mode decomposition. Digital Signal Processing, 20(4), 1221–1228.CrossRef
70.
Zurück zum Zitat Narayanana, V. A., & Prabhu, K. M. M. (2003). The fractional Fourier transform: Theory, implementation and error analysis. Jornal of Microprocessors and Microsys, 27(10), 511–521.CrossRef Narayanana, V. A., & Prabhu, K. M. M. (2003). The fractional Fourier transform: Theory, implementation and error analysis. Jornal of Microprocessors and Microsys, 27(10), 511–521.CrossRef
71.
Zurück zum Zitat Sejdic, E., Djurovic, I., Jiang, J., Stankovic, L.J. (2009). Time–frequency based feature extraction and classification: considering energy concentration as a feature using stockwell transform and related approaches. VDM Verlag Publishing Saarbrucken, Germany (2009). http://www.vdm-verlag.de. Sejdic, E., Djurovic, I., Jiang, J., Stankovic, L.J. (2009). Time–frequency based feature extraction and classification: considering energy concentration as a feature using stockwell transform and related approaches. VDM Verlag Publishing Saarbrucken, Germany (2009). http://​www.​vdm-verlag.​de.
72.
Zurück zum Zitat Alfaouri, M., & Daqrouq, K. (2008). ECG signal denoising by wavelet transform thresholding. American Journal of Applied Sciences, 5(3), 276–281.CrossRef Alfaouri, M., & Daqrouq, K. (2008). ECG signal denoising by wavelet transform thresholding. American Journal of Applied Sciences, 5(3), 276–281.CrossRef
74.
Zurück zum Zitat Dliou, A., Latif, R., Laaboubi, M., & Maoulainine, F. M. R. (2014). Abnormal ECG signal analysis using non parametric time-frequency techniques. Arabian Journal Science Engineering, 39(2), 913–921.CrossRef Dliou, A., Latif, R., Laaboubi, M., & Maoulainine, F. M. R. (2014). Abnormal ECG signal analysis using non parametric time-frequency techniques. Arabian Journal Science Engineering, 39(2), 913–921.CrossRef
75.
Zurück zum Zitat Martis, R. J., Acharya, U. R., Lim, C. M., & Suri, J. S. (2013). Characterization of ECG beats from cardiac arrhythmia using discrete cosine. Knowledge-Based Systems, 45, 76–82.CrossRef Martis, R. J., Acharya, U. R., Lim, C. M., & Suri, J. S. (2013). Characterization of ECG beats from cardiac arrhythmia using discrete cosine. Knowledge-Based Systems, 45, 76–82.CrossRef
76.
Zurück zum Zitat Homaeinezhad, M. R., Atyabi, S. A., Tavakolli, E., Toosi, H. N., Ghaffari, A., & Ebrahimpour, R. (2012). ECG arrhythmia recognition via a neuro-SVM–KNN hybrid classifier with virtual QRS image-based geometrical features. Expert Systems with Applications, 39(2), 2047–2058.CrossRef Homaeinezhad, M. R., Atyabi, S. A., Tavakolli, E., Toosi, H. N., Ghaffari, A., & Ebrahimpour, R. (2012). ECG arrhythmia recognition via a neuro-SVM–KNN hybrid classifier with virtual QRS image-based geometrical features. Expert Systems with Applications, 39(2), 2047–2058.CrossRef
77.
Zurück zum Zitat Gupta, V., Mittal, M. (2016). Respiratory signal analysis using PCA, FFT and ARTFA. In: 2016 IEEE Proc. of ICEPES-16. Maulana Azad National Institute of Technology, Bhopal, India, 2016, pp. 221–225. Gupta, V., Mittal, M. (2016). Respiratory signal analysis using PCA, FFT and ARTFA. In: 2016 IEEE Proc. of ICEPES-16. Maulana Azad National Institute of Technology, Bhopal, India, 2016, pp. 221–225.
78.
Zurück zum Zitat Lin, C. H. (2008). Frequency-domain features for ECG beat discrimination using grey relational analysis-based classifier. Computers & Mathematics with Applications, 55(4), 680–690.MathSciNetMATHCrossRef Lin, C. H. (2008). Frequency-domain features for ECG beat discrimination using grey relational analysis-based classifier. Computers & Mathematics with Applications, 55(4), 680–690.MathSciNetMATHCrossRef
79.
Zurück zum Zitat Übeyli, E. D. (2009). Statistics over features of ECG signals. Expert Systems with Applications, 36(5), 8758–8767.CrossRef Übeyli, E. D. (2009). Statistics over features of ECG signals. Expert Systems with Applications, 36(5), 8758–8767.CrossRef
80.
Zurück zum Zitat Güler, I., & Übeyli, E. D. (2005). ECG beat classifier designed by combined neural network model. Pattern Recognition, 38(2), 199–208.CrossRef Güler, I., & Übeyli, E. D. (2005). ECG beat classifier designed by combined neural network model. Pattern Recognition, 38(2), 199–208.CrossRef
81.
Zurück zum Zitat Kay, S. M. (1988). Modern spectral estimation (1st ed., pp. 328–457). Prentice Hall. Kay, S. M. (1988). Modern spectral estimation (1st ed., pp. 328–457). Prentice Hall.
82.
Zurück zum Zitat Kallas, M., Honeine, P., Richard, C., Francis, C., Amoud, H. (2012). Prediction of time series using Yule–Walker equations with Kernels. In: 2012 IEEE int conf. on acoustics, speech and signal processing (ICASSP 2012), pp. 2185–2188 Kallas, M., Honeine, P., Richard, C., Francis, C., Amoud, H. (2012). Prediction of time series using Yule–Walker equations with Kernels. In: 2012 IEEE int conf. on acoustics, speech and signal processing (ICASSP 2012), pp. 2185–2188
83.
Zurück zum Zitat Tomar, A. (2016). Various classifiers based on their accuracy for age estimation through facial features. International Research Journal of Engineering and Technology, 3(7), 1679–1682. Tomar, A. (2016). Various classifiers based on their accuracy for age estimation through facial features. International Research Journal of Engineering and Technology, 3(7), 1679–1682.
84.
Zurück zum Zitat Chawla, M. P. S. (2009). A comparative analysis of principal component and independent component techniques for electrocardiograms. Journal of Neural Computing and Applications, 18(6), 539–556.CrossRef Chawla, M. P. S. (2009). A comparative analysis of principal component and independent component techniques for electrocardiograms. Journal of Neural Computing and Applications, 18(6), 539–556.CrossRef
85.
Zurück zum Zitat Nikan, S., Sridhar, F.G., Bauer, M. Pattern recognition application in ECG arrhythmia classification. In: 10th Int joint conference on biomedical engineering systems and technologies (BIOSTEC 2017), pp.48–56 Nikan, S., Sridhar, F.G., Bauer, M. Pattern recognition application in ECG arrhythmia classification. In: 10th Int joint conference on biomedical engineering systems and technologies (BIOSTEC 2017), pp.48–56
86.
Zurück zum Zitat Yeh, Y. C., Wang, W. J., & Chiou, C. W. (2009). Cardiac arrhythmia diagnosis method using linear discriminant analysis on ECG signals. Measurement, 42(5), 778–789.CrossRef Yeh, Y. C., Wang, W. J., & Chiou, C. W. (2009). Cardiac arrhythmia diagnosis method using linear discriminant analysis on ECG signals. Measurement, 42(5), 778–789.CrossRef
87.
Zurück zum Zitat Gupta, V., Mittal, M., & Mittal, V. (2019). R-Peak detection using chaos analysis in standard and real time ECG databases. IRBM, 40(6), 341–354.CrossRef Gupta, V., Mittal, M., & Mittal, V. (2019). R-Peak detection using chaos analysis in standard and real time ECG databases. IRBM, 40(6), 341–354.CrossRef
88.
Zurück zum Zitat Mukhopadhyay, S., & Sircar, P. (1996). Parametric modelling of ECG signal. Journal Medical & Biological Engineering & Computing, 34(2), 171–174.CrossRef Mukhopadhyay, S., & Sircar, P. (1996). Parametric modelling of ECG signal. Journal Medical & Biological Engineering & Computing, 34(2), 171–174.CrossRef
89.
Zurück zum Zitat Gupta, V., Mittal, M., & Mittal, V. (2021). Chaos theory and ARTFA: emerging tools for interpreting ECG signals to diagnose cardiac arrhythmias. Wireless Personal Communications, 118, 3615–3646.CrossRef Gupta, V., Mittal, M., & Mittal, V. (2021). Chaos theory and ARTFA: emerging tools for interpreting ECG signals to diagnose cardiac arrhythmias. Wireless Personal Communications, 118, 3615–3646.CrossRef
91.
Zurück zum Zitat Al-Dujaili, M. J., & Mezeel, M. T. (2021). Novel approach for reinforcement the extraction of ECG signal for twin fetuses based on modified BSS. Wireless Personal Communications, 119, 2431–2450.CrossRef Al-Dujaili, M. J., & Mezeel, M. T. (2021). Novel approach for reinforcement the extraction of ECG signal for twin fetuses based on modified BSS. Wireless Personal Communications, 119, 2431–2450.CrossRef
92.
Zurück zum Zitat Kalaivani, S., Tharini, C., Saranya, K., et al. (2020). Design and implementation of hybrid compression algorithm for personal health care big data applications. Wireless Personal Communications, 113, 599–615.CrossRef Kalaivani, S., Tharini, C., Saranya, K., et al. (2020). Design and implementation of hybrid compression algorithm for personal health care big data applications. Wireless Personal Communications, 113, 599–615.CrossRef
Metadaten
Titel
A Novel FrWT Based Arrhythmia Detection in ECG Signal Using YWARA and PCA
verfasst von
Varun Gupta
Monika Mittal
Vikas Mittal
Publikationsdatum
29.11.2021
Verlag
Springer US
Erschienen in
Wireless Personal Communications / Ausgabe 2/2022
Print ISSN: 0929-6212
Elektronische ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-021-09403-1

Weitere Artikel der Ausgabe 2/2022

Wireless Personal Communications 2/2022 Zur Ausgabe

Neuer Inhalt