Skip to main content
Erschienen in: Wireless Personal Communications 3/2022

21.02.2022

Elements Failure Detection and Radiation Pattern Correction for Time-Modulated Linear Antenna Arrays Using Particle Swarm Optimization

verfasst von: Hend A. Malhat, Anas S. Zainud-Deen, Mohamed Rihan, Mona M. Badway

Erschienen in: Wireless Personal Communications | Ausgabe 3/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Array elements failure detection and pattern correction for time-modulated linear array antennas (TMLAA) are investigated in this paper. The particle swarm optimization (PSO) is used to detect the locations of failed elements from their damaged radiation patterns. A minimization of mean square error (MSE) between the original and calculated radiation pattern is employed to estimate the on-time duration of the TMLAA. Various failure scenarios for the elements are considered. The correction of damaged radiation pattern is achieved via reconfiguring the on-time instants and durations of the RF switches connected to the array elements. The correction method involves using PSO, which compares the damaged pattern with an optimized pattern through the minimization of the MSE. Two correction methods are investigated using original Chebyshev pattern and two levels mask with side-lobe level (SLL) of − 35 dB. The capability and efficiency of the proposed methods will be demonstrated through 32-elements TMLAA with Dolph-Chebyshev excitation. Single and multiple faults are detected, and the radiation pattern are corrected using the PSO.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Mailloux, R. J. (2017). Phased array antenna handbook (3rd ed.). Artech house. Mailloux, R. J. (2017). Phased array antenna handbook (3rd ed.). Artech house.
2.
Zurück zum Zitat Mynbaev, D. K., & Scheiner, L. L. (2020). Essentials of modern communications. John Wiley & Sons.CrossRef Mynbaev, D. K., & Scheiner, L. L. (2020). Essentials of modern communications. John Wiley & Sons.CrossRef
3.
Zurück zum Zitat Chen, Y., & Tsai, I. (2018). Detection and correction of element failures using a cumulative sum scheme for active phased arrays. IEEE Access, 6, 8797–8809.CrossRef Chen, Y., & Tsai, I. (2018). Detection and correction of element failures using a cumulative sum scheme for active phased arrays. IEEE Access, 6, 8797–8809.CrossRef
4.
Zurück zum Zitat Rondinelli, L. A. (1959). Effect of random errors on the performance of antenna arrays of many elements. IRE National Convension and Recaction Part I, 7, 174–189. Rondinelli, L. A. (1959). Effect of random errors on the performance of antenna arrays of many elements. IRE National Convension and Recaction Part I, 7, 174–189.
5.
Zurück zum Zitat Karman, M., Kȍymen, H., Atalar, A., & M. ODonnell,. (1994). Influence of missing array elements on aberration correction for medical ultrasound. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 41, 613–620.CrossRef Karman, M., Kȍymen, H., Atalar, A., & M. ODonnell,. (1994). Influence of missing array elements on aberration correction for medical ultrasound. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 41, 613–620.CrossRef
6.
Zurück zum Zitat Choudhury, B., & Jha, R. (2016). Fault detection in antenna arrays. Soft computing in electromagnetics: Methods and applications (pp. 124–154). Cambridge University Press.CrossRef Choudhury, B., & Jha, R. (2016). Fault detection in antenna arrays. Soft computing in electromagnetics: Methods and applications (pp. 124–154). Cambridge University Press.CrossRef
7.
Zurück zum Zitat Boopalan, N., Ramasamy, A. K., & Nagi, F. H. (2020). Faulty antenna detection in a linear array using simulated annealing optimization. Indonesian Journal of Electrical Engineering and Computer Science, 19(3), 1340–1347.CrossRef Boopalan, N., Ramasamy, A. K., & Nagi, F. H. (2020). Faulty antenna detection in a linear array using simulated annealing optimization. Indonesian Journal of Electrical Engineering and Computer Science, 19(3), 1340–1347.CrossRef
8.
Zurück zum Zitat Chen, B., Ouyang, J., Wu, G., & Long, R., (2016). A novel on-board and amplitude-only measurement method for phase array calibration, 2016 IEEE 5th Asia-Pacific Conference on Antennas and Propagation, pp. 221–222, Taiwan. Chen, B., Ouyang, J., Wu, G., & Long, R., (2016). A novel on-board and amplitude-only measurement method for phase array calibration, 2016 IEEE 5th Asia-Pacific Conference on Antennas and Propagation, pp. 221–222, Taiwan.
9.
Zurück zum Zitat Iglesias, R., Ares, F., Fernandez-Delgado, M., Rodriguez, J. A., Bergains, J., & Barro, S. (2008). Element failure detection in linear antenna arrays using case-based reasoning. IEEE Antennas and Propagation Magazine, 50(4), 198–204.CrossRef Iglesias, R., Ares, F., Fernandez-Delgado, M., Rodriguez, J. A., Bergains, J., & Barro, S. (2008). Element failure detection in linear antenna arrays using case-based reasoning. IEEE Antennas and Propagation Magazine, 50(4), 198–204.CrossRef
10.
Zurück zum Zitat Heo, S., & Lee, J. H. (2018). Fault detection and classification using artificial neural networks. IFAC Hosting by Elsevier Ltd, 51(18), 470–475. Heo, S., & Lee, J. H. (2018). Fault detection and classification using artificial neural networks. IFAC Hosting by Elsevier Ltd, 51(18), 470–475.
11.
Zurück zum Zitat Choudhury, B., Acharya, O. P., & Patnaik, A. (2013). Bacteria foraging optimization in antenna engineering: An application to array fault finding. International Journal of RF and Microwave Computer-Aided Engineering, 23(2), 141–148.CrossRef Choudhury, B., Acharya, O. P., & Patnaik, A. (2013). Bacteria foraging optimization in antenna engineering: An application to array fault finding. International Journal of RF and Microwave Computer-Aided Engineering, 23(2), 141–148.CrossRef
12.
Zurück zum Zitat Khan, S. U., Qureshi, I. M., Zaman, F., & Naveed, A. (2013). Null placement and sidelobe suppression in failed array using symmetrical element failure technique and hybrid heuristic computation. Progress in Electromagnetics Research, 52, 165–184.CrossRef Khan, S. U., Qureshi, I. M., Zaman, F., & Naveed, A. (2013). Null placement and sidelobe suppression in failed array using symmetrical element failure technique and hybrid heuristic computation. Progress in Electromagnetics Research, 52, 165–184.CrossRef
13.
Zurück zum Zitat Zainud-Deen, S. H., Ibrahem, M. S., Sharshar, H. A., & Ibrahem, S. M. M., (2004). Array failure correction with orthogonal method, 21th National Radio Sience Conference (NRSC2004), B7, pp. 1–9, NTI, Egypt. Zainud-Deen, S. H., Ibrahem, M. S., Sharshar, H. A., & Ibrahem, S. M. M., (2004). Array failure correction with orthogonal method, 21th National Radio Sience Conference (NRSC2004), B7, pp. 1–9, NTI, Egypt.
14.
Zurück zum Zitat Khan, S. U., Rahim, K. A., Aminu-Baba, M., & Murad, N. A. (2017). Correction of failure in linear antenna arrays with greedy sparseness constrained optimization technique. PLoS ONE, 12(12), e0189240.CrossRef Khan, S. U., Rahim, K. A., Aminu-Baba, M., & Murad, N. A. (2017). Correction of failure in linear antenna arrays with greedy sparseness constrained optimization technique. PLoS ONE, 12(12), e0189240.CrossRef
15.
Zurück zum Zitat Muralidharan, R., Vallavaraj, A., Mahanti, G. K., & Patidar, H. (2017). QPSO for failure correction of linear array of mutually coupled parallel dipole antennas with desired side lobe level and return loss. Journal of King Saud University, 29(2), 112–117.CrossRef Muralidharan, R., Vallavaraj, A., Mahanti, G. K., & Patidar, H. (2017). QPSO for failure correction of linear array of mutually coupled parallel dipole antennas with desired side lobe level and return loss. Journal of King Saud University, 29(2), 112–117.CrossRef
16.
Zurück zum Zitat Yeo, B., & Lu, Y. (1999). Array failure correction with a genetic algorithm. IEEE Transactions on Antennas and Propagation, 47, 823–828.CrossRef Yeo, B., & Lu, Y. (1999). Array failure correction with a genetic algorithm. IEEE Transactions on Antennas and Propagation, 47, 823–828.CrossRef
17.
Zurück zum Zitat Grewal, N. S., Rattan, M., & Patterh, M. S. (2012). A linear antenna array failure correction using firefly algorithm. Progress in Electromagnetics Research M, 27, 241–254.CrossRef Grewal, N. S., Rattan, M., & Patterh, M. S. (2012). A linear antenna array failure correction using firefly algorithm. Progress in Electromagnetics Research M, 27, 241–254.CrossRef
18.
Zurück zum Zitat Grewal, N. S., Rattan, M., & Patterh, M. S. (2017). A linear antenna array failure correction using improved bat algorithm. International Journal of RF and Microwave Computer-Aided Engineering, 27(7), 1–16. Grewal, N. S., Rattan, M., & Patterh, M. S. (2017). A linear antenna array failure correction using improved bat algorithm. International Journal of RF and Microwave Computer-Aided Engineering, 27(7), 1–16.
19.
Zurück zum Zitat Zainud-Deen, S. H., Azzam, D. Z., & Malhat, H. A. (2020). 2D/3D shaped radiation patterns of sunflower and conformal antenna arrays using phase synthesis. Wireless Personal Communications, 115(6), 877–891.CrossRef Zainud-Deen, S. H., Azzam, D. Z., & Malhat, H. A. (2020). 2D/3D shaped radiation patterns of sunflower and conformal antenna arrays using phase synthesis. Wireless Personal Communications, 115(6), 877–891.CrossRef
20.
Zurück zum Zitat Zainud-Deen, S. H., & Malhat, H. A. (2019). Electronic beam switching of circularly polarized plasma magneto-electric dipole array with multiple beams. Plasmonics, 14(4), 881–890.CrossRef Zainud-Deen, S. H., & Malhat, H. A. (2019). Electronic beam switching of circularly polarized plasma magneto-electric dipole array with multiple beams. Plasmonics, 14(4), 881–890.CrossRef
21.
Zurück zum Zitat Malhat, H. A., & Zainud-Deen, S. H. (2015). Equivalent circuit with frequency-independent lumped elements for plasmonic graphene patch antenna using particle swarm optimization technique. Wireless Personal Communications, 85(4), 1851–1867.CrossRef Malhat, H. A., & Zainud-Deen, S. H. (2015). Equivalent circuit with frequency-independent lumped elements for plasmonic graphene patch antenna using particle swarm optimization technique. Wireless Personal Communications, 85(4), 1851–1867.CrossRef
22.
Zurück zum Zitat Rocca, P., Yang, F., Poli, L., & Yang, S. (2019). Time-modulated array antennas–theory, techniques, and applications. Journal of Electromagnetic Waves and Applications, 33(12), 1503–1531.CrossRef Rocca, P., Yang, F., Poli, L., & Yang, S. (2019). Time-modulated array antennas–theory, techniques, and applications. Journal of Electromagnetic Waves and Applications, 33(12), 1503–1531.CrossRef
23.
Zurück zum Zitat Maneiro-Catoira, R., Brégains, J., García-Naya, J. A., & Castedo, L. (2017). Time modulated arrays: From their origin to their utilization in wireless communication systems. Sensors, 17(3), 590.CrossRef Maneiro-Catoira, R., Brégains, J., García-Naya, J. A., & Castedo, L. (2017). Time modulated arrays: From their origin to their utilization in wireless communication systems. Sensors, 17(3), 590.CrossRef
24.
Zurück zum Zitat Kummer, W. H., Villeneuve, A. T., Fong, T. S., & Terrio, F. G. (1963). Ultra-low sidelobes from time-modulated arrays. IEEE transactions on antennas and propagation, 11(6), 163–275.CrossRef Kummer, W. H., Villeneuve, A. T., Fong, T. S., & Terrio, F. G. (1963). Ultra-low sidelobes from time-modulated arrays. IEEE transactions on antennas and propagation, 11(6), 163–275.CrossRef
25.
Zurück zum Zitat Zainud-Deen, A. S., Malhat, H. A., Badway, M. M., Rihan, M., (2021).Full-wave Simulation of Time-modulated Parabolic Linear Array Using the Method of Moments, 38th National Radio Science Conference (NRSC). Zainud-Deen, A. S., Malhat, H. A., Badway, M. M., Rihan, M., (2021).Full-wave Simulation of Time-modulated Parabolic Linear Array Using the Method of Moments, 38th National Radio Science Conference (NRSC).
27.
Zurück zum Zitat He, C., Cao, A., Chen, J., Liang, X., Zhu, W., Geng, J., & Jin, R. (2018). Direction finding by time-modulated linear array. IEEE Transactions on Antennas and Propagation, 66(7), 3642–3652.CrossRef He, C., Cao, A., Chen, J., Liang, X., Zhu, W., Geng, J., & Jin, R. (2018). Direction finding by time-modulated linear array. IEEE Transactions on Antennas and Propagation, 66(7), 3642–3652.CrossRef
28.
Zurück zum Zitat Poli, L., Rocca, P., Oliveri, G., & Massa, A. (2014). Failure correction in time-modulated linear arrays. IET Radar, Sonar & Navigation, 8(3), 195–201.CrossRef Poli, L., Rocca, P., Oliveri, G., & Massa, A. (2014). Failure correction in time-modulated linear arrays. IET Radar, Sonar & Navigation, 8(3), 195–201.CrossRef
29.
Zurück zum Zitat Zainud-Deen, A. S., Malhat, H. A., Badway, M. M., Rihan, M., (2021). Detection and Correction of Faulty Patterns in Four-Dimensional Antenna Linear Array Using Particle Swarm Optimization, 38th National Radio Science Conference (NRSC). Zainud-Deen, A. S., Malhat, H. A., Badway, M. M., Rihan, M., (2021). Detection and Correction of Faulty Patterns in Four-Dimensional Antenna Linear Array Using Particle Swarm Optimization, 38th National Radio Science Conference (NRSC).
30.
Zurück zum Zitat Wang, W.-Q., So, H. C., & Farina, A. (2016). An overview on time/frequency modulated array processing. IEEE Journal of Selected Topics in Signal Processing, 11(2), 228–246.CrossRef Wang, W.-Q., So, H. C., & Farina, A. (2016). An overview on time/frequency modulated array processing. IEEE Journal of Selected Topics in Signal Processing, 11(2), 228–246.CrossRef
31.
Zurück zum Zitat Tong, Y., (2013). Time Modulated Linear Arrays, Ph.D. Thesis, The University of Sheffield, August. Tong, Y., (2013). Time Modulated Linear Arrays, Ph.D. Thesis, The University of Sheffield, August.
Metadaten
Titel
Elements Failure Detection and Radiation Pattern Correction for Time-Modulated Linear Antenna Arrays Using Particle Swarm Optimization
verfasst von
Hend A. Malhat
Anas S. Zainud-Deen
Mohamed Rihan
Mona M. Badway
Publikationsdatum
21.02.2022
Verlag
Springer US
Erschienen in
Wireless Personal Communications / Ausgabe 3/2022
Print ISSN: 0929-6212
Elektronische ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-022-09645-7

Weitere Artikel der Ausgabe 3/2022

Wireless Personal Communications 3/2022 Zur Ausgabe

Neuer Inhalt