Skip to main content
Log in

Variation in grafted European chestnut and hybrids by microsatellites reveals two main origins in the Iberian Peninsula

  • Original Paper
  • Published:
Tree Genetics & Genomes Aims and scope Submit manuscript

Abstract

This is the first known large-scale molecular study of simple sequence repeats (SSR) loci based on samples from grafted trees found in the Iberian Peninsula and Canary Islands and hybrids. Interspecific hybrids resistant to ‘ink disease’ (Phytophthora spp.) were obtained in France, Portugal and Spain, although difficult to distinguish by morphology. This study focuses on genetic variation using 10 SSRs (11 unlinked loci) from clonally propagated cultivars (574 accessions) of European chestnut (Castanea sativa) and hybrids (71 accessions). They were compared with a representative sample of exotic chestnut species present in the Atlantic area, 47 accessions of Castanea crenata, 37 of Castanea mollissima and 33 of Castanea henryi. Accessions were analysed using a model-based Bayesian procedure (Structure), factorial correspondence analysis and analysis of molecular variance. The main chestnut species, hybrids and alien introgressions were differentiated. Two main origins of variability in European cultivated chestnut were found in the Iberian Peninsula, one in the North and a second in the Centre. Andalusian and Canary Island accessions could be assigned to both of these zones, which indicate that they could have been colonised with cultivars originating from either zone, in the case of the Canary Islands from the sixteenth century on.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Barnaud B, Deu M, Garine E, McKey D, Joly HI (2007) Local genetic diversity of sorghum in a village in northern Cameroon: structure and dynamics of landraces. Theor Appl Genet 114:237–248. doi:10.1007/s00122-006-0426-8

    Article  PubMed  Google Scholar 

  • Barreneche T, Casasoli M, Russel K, Akkak A, Meddour H, Plomion C, Villani F, Kremer A (2004) Comparative mapping between Quercus and Castanea using simple-sequence repeats (SSRs). Theor Appl Genet 108:558–566

    Article  CAS  PubMed  Google Scholar 

  • Belkhir K, Borsa P, Goudet J, Chikhi L, Bonhomme F (1996–1998) GENETIX, logiciel sous Windows TM pour la génétique des populations. Laboratoire du Génome et Populations, CNRS UPR 9060, Université de Montpellier II, Montpellier. France

  • Boccacci P, Akkak A, Torello Marinoni D, Bounous G, Botta R (2004) Typing European chestnut (Castanea sativa Mill.) cultivars using oak simple sequence repeat markers. HortScience 39:1212–1216

    CAS  Google Scholar 

  • Botta R, Marinoni DD, Beccaro G, Akkak A, Bounous G (2001) Development of a DNA typing technique for the genetic certification of chestnut cultivars. For Snow Landsc Res 76:425–428

    Google Scholar 

  • Bruford MW, Ciofi C, Funk SM (1998) Characteristics of microsatellites. In: Karp A, Isaac PG, Ingram DS (eds) Molecular tools for screening biodiversity. Chapman and Hall, London, pp 202–205

    Google Scholar 

  • Buck EJ, Hadonou M, James CJ, Blakesley D, Russell K (2003) Isolation and characterization of polymorphic microsatellites in European chestnut (Castanea sativa Mill.). Mol Ecol Notes 3:239–241

    Article  CAS  Google Scholar 

  • Camus A (1929) Les châtaigniers. Monographie des genres Castanea et Castanopsis. Econ Sylvic 3:1–604

    Google Scholar 

  • Casasoli M, Derory J, Morera-Dutrey C, Brendel O, Porth I, Guehl JM, Villani F, Kremer A (2006) Comparison of quantitative trait loci for adaptive traits between oak and chestnut based on an expressed sequence tag consensus map. Genetics 172:533–546

    Article  CAS  PubMed  Google Scholar 

  • Coart E, Vekemans X, Smulders MJM, Wagner I, Van Huylenbroeck J, Van Bockstaele E, Roldán-Ruíz I (2003) Genetic variation in the endangered wild apple (Malus sylvestris (L.) Mill.) in Belgium as revealed by amplified fragment length polymorphism and microsatellite markers. Mol Ecol 12:845–857

    Article  CAS  PubMed  Google Scholar 

  • Conedera M, Krebs P, Tinner W, Pradella M, Torriani D (2004) The cultivation of Castanea sativa (Mill.) in Europe, from its origin to its diffusion on a continental scale. Veg Hist Archaeobot 13:161–179

    Article  Google Scholar 

  • Costa R, Valdiviesso T, Marum L, Fonseca L, Borges O, Soeiro J, Soares FM, Sequeira J, Assunção A, Correia P (2005) Characterization of traditional Portuguese chestnut cultivars by nuclear SSRs. Acta Hort 693:437–440

    CAS  Google Scholar 

  • Dane F, Lang P, Huang H, Fu Y (2003) Intercontinental genetic divergence of Castanea species in eastern Asia and eastern North America. Heredity 91:314–321

    Article  CAS  PubMed  Google Scholar 

  • Excoffier L, Laval G, Schneider S (2005) Arlequin ver. 3.0: an integrated software package for population genetics data analysis. Evol Bioinform Online 1:47–50

    CAS  PubMed  Google Scholar 

  • El-Mousadik A, Petit RJ (1996) High level of genetic differentiation for allelic richness among populations of the argan tree [Argania spinosa (L.) Skeels] endemic to Morocco. Theor Appl Genet 92:832–839

    Article  Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620. doi:10.1111/j.1365-294X.2005.02553.x

    Article  CAS  PubMed  Google Scholar 

  • Gallastegui C (1926) Técnica de la hibridación artificial del castaño. Boletín Real Sociedad Ciencias Naturales 26:88–94

    Google Scholar 

  • Gomes Guerreiro M (1948) Alguns estudos do género Castanea. Publicação da Direcção Geral dos Serviços Florestais e Aquícolas, Lisboa

    Google Scholar 

  • Gomes Guerreiro M (1957) Castanheiros. Publicação da Direcção Geral dos Serviços Florestais e Aquícolas, Lisboa

    Google Scholar 

  • Goudet J (2001) FSTAT, a program to estimate and test gene diversities and fixation indices (version 2.9.3). Available from http://www.unil.ch/izea/softwares/fstat.html. Updated from Goudet 1995

  • Goulão L, Valdiviesso T, Santana C, Oliveira CM (2001) Comparison between phenetic characterisation using RAPD and ISSR markers and phenotypic data of cultivated chestnut (Castanea sativa Mill.). Genet Resour Crop Ev 48:329–338

    Article  Google Scholar 

  • Huang H, Dane F, Norton JD (1994) Allozyme diversity in Chinese, Seguin and American chestnut (Castanea spp.). Theor Appl Genet 88:981–985

    Article  Google Scholar 

  • Kampfer S, Lexer C, Glössl J, Steinkellner H (1998) Characterization of (GA)n microsatellite loci from Quercus robur. Hereditas 129:183–186

    Article  CAS  Google Scholar 

  • Krebs P, Conedera M, Pradella M, Torriani D, Felber M, Tinner W (2004) Quaternary refugia of the sweet chestnut (Castanea sativa Mill.): an extended palynological approach. Veg Hist Archaeobot 13:145–160

    Google Scholar 

  • Kutil BL, Williams CG (2001) Triplet-repeat microsatellite shared among hard and soft pines. J Hered 92:327–332

    Article  CAS  PubMed  Google Scholar 

  • Lafitte G (1946) Le Châtaignier Japonais en Pays Basque. Mendionde 69

  • Lang P, Dane F, Kubisiak TL, Huang H (2007) Molecular evidence for an asian origin and a unique westward migration of species in the genus Castanea via Europe and North America. Mol Phylogenet Evol 43:49–59

    Article  CAS  PubMed  Google Scholar 

  • Marinoni D, Akkak A, Bounous G, Edwards KJ, Botta R (2003) Development and characterization of microsatellite markers in Castanea sativa (Mill.). Mol Breeding 11:127–136

    Article  CAS  Google Scholar 

  • Martin MA, Alvarez JB, Mattioni C, Cherubini M, Villani F, Martin LM (2009) Identification and characterisation of traditional chestnut varieties of southern Spain using morphological and simple sequence repeat (SSRs) markers. Ann Appl Biol 154:389–398

    Article  CAS  Google Scholar 

  • Mattioni C, Cherubini M, Micheli E, Villani F, Bucci G (2008) Role of domestication in shaping Castanea sativa genetic variation in Europe. Tree Genet Genomes 4:563–574

    Article  Google Scholar 

  • Pereira-Lorenzo S, Fernandez-Lopez J (1997) Propagation of chestnut cultivars by grafting: methods, rootstocks and plant quality. J Hort Sci 72(5):731–739

    Google Scholar 

  • Pereira-Lorenzo S, Díaz-Hernández MB, Ramos-Cabrer AM (2006) Use of highly discriminating morphological characters and isozymes in the study of Spanish chestnut cultivars. J Am Soc Hortic Sci 131:770–779

    CAS  Google Scholar 

  • Pereira-Lorenzo S, Ballester A, Corredoira E, Vieitez AM, Agnanostakis S, Costa R, Bounous G, Botta R, Beccaro GL, Kubisiak TL, Conedera M, Krebs P, Yamamoto T, Sawamura Y, Takada N, Gomes-Laranjo J, Ramos-Cabrer AM (2010) Chestnut breeding. In: Badenes ML, Byrne D (eds) Fruit breeding/Springer Series. Handbook of Plant Breeding. Springer, New York

    Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    CAS  PubMed  Google Scholar 

  • Rajora OP, Rahman MH, Dayanandan S, Mosseler A (2001) Isolation, characterization, inheritance and linkage of microsatellite DNA markers in white spruce (Picea glauca) and their usefulness in other spruce species. MGG Mol Gen Genet 264:871–882

    Article  CAS  Google Scholar 

  • Ramos-Cabrer AM, Pereira-Lorenzo S (2005) Genetic relationship between Castanea sativa Mill. trees from North-western to South Spain based on morphological traits and isoenzymes. Genet Resour Crop Ev 52:879–890

    Article  CAS  Google Scholar 

  • Schad C, Solignat G, Grente J, Venot P (1952) Recherches sur le chataignier à la station de Brive. Annales d’Amelioration des Plantes 2:369–453

    Google Scholar 

  • Sheperd M, Cross M, Maguire TL, Dieters MJ, Williams CG, Henry RJ (2002) Transpecific microsatellites for hard pines. Theor Appl Genet 104:819–827

    Article  Google Scholar 

  • Steinkellner H, Fluch S, Turetschek E, Lexer C, Streiff R, Kremer A, Burg K, Glössl J (1997) Identification and characterization of (GA/CT)n-microsatellite loci from Quercus petraea. Plant Mol Biol 33:1093–1096

    Article  CAS  PubMed  Google Scholar 

  • Tavaud M, Zanetto A, David JL, Laigret F, Dirlewanger E (2004) Genetic relationships between diploid and allotetraploid cherry species (Prunus avium, Prunus x gondouinii and Prunus cerasus). Heredity 93:631–638

    Article  CAS  PubMed  Google Scholar 

  • Urquijo P (1944) Aspectos de la obtención de híbridos resistentes a la enfermedad del castaño. Boletín Vegetal Entomología Agrícola 12:447–462

    Google Scholar 

  • Urquijo P (1957) La regeneración del castaño. Estación de fitopatología del castaño (INIA) 54:1–16

    Google Scholar 

  • Van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P (2004) Micro-checker: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4:535–538

    Article  Google Scholar 

  • Vieira Natividade J (1947) Quatro anos na defesa da campanha e Reconstituição dos Soutos. Edição da Junta Nacional das frutas, Lisboa

    Google Scholar 

  • Yamamoto T, Tanaka T, Kotobuki K, Matsuta N, Suzuki M, Hayashi T (2003) Characterization of simple sequence repeats in Japanese chestnut. J Hortic Sci Biotech 78:197–203

    CAS  Google Scholar 

Download references

Acknowledgements

This study was supported in part by the European Union, Atlantic Area Interreg III B programme [CastaneaREG project: “Evaluation, Analyse et Gestion de la Biodiversité au sein de l’espèce Castanea sativa (châtaignier européen) dans les régions de l’Espace Atlantique”], co-financed by the European Regional Development Fund (ERDF).

In Spain, we thank the funding for the project “Variabilidad genética de los principales cultivares de castaño en España mediante caracteres morfológicos, caracteres adaptativos y marcadores moleculares” (from Ministerio de Ciencia y Tecnología, Proyectos de I+D, AGL2003-09874-C02-01, 2003–2006). In Portugal, we thank the funding for the Project AGRO 448, Medida 8.1 “Valorização e preservação da biodiversidade de variedades de castanha da região Centro e Norte de Portugal”. We thank Gaëlle Capdeville for her technical help with CEQTM 8000 genetic analysis system. We also thank B. Cuenca-Valera from Empresa de Transformación Agraria, SA (TRAGSA), M.B. Díaz-Hernández from Universidade de Santiago de Compostela (USC), M. Ciordia-Ara from Servicio Regional de Investigación y Desarrollo Agroalimentario de Asturias (SERIDA), D. Ríos-Mesa from Centro de la Conservación de la Biodiversidad Agrícola de Tenerife (CCBAT), A.J. Gónzález-Díaz from Cabildo de la Palma, O. Borges from Direcção Regional de Agricultura de Trás-os-Montes (DRATM), L. Fonseca from Direcção Regional de Agricultura da Beira Litoral (DRABL), Augusto Assunção from Direção Regional de Agricultura de Entre-Douro e Minho (DRAEDM) and F. Matos Soares from Direcção Regional de Agricultura da Beira Interior (DRABI) for their help with the sample collection. Our acknowledgements also to Dra. Carmen Bouza from Universidade de Santiago de Compostela (USC) for helping with the analyses of this data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Santiago Pereira-Lorenzo.

Additional information

Communicated by A. Kremer

Santiago Pereira-Lorenzo, Rita Maria Lourenço Costa and Teresa Barreneche have contributed equally to the studies presented in this manuscript.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pereira-Lorenzo, S., Costa, R.M.L., Ramos-Cabrer, A.M. et al. Variation in grafted European chestnut and hybrids by microsatellites reveals two main origins in the Iberian Peninsula. Tree Genetics & Genomes 6, 701–715 (2010). https://doi.org/10.1007/s11295-010-0285-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11295-010-0285-y

Keywords

Navigation