Skip to main content
Log in

DNA markers identify hybrids between butternut (Juglans cinerea L.) and Japanese walnut (Juglans ailantifolia Carr.)

  • Original Paper
  • Published:
Tree Genetics & Genomes Aims and scope Submit manuscript

Abstract

Butternut (Juglans cinerea L.) is a temperate deciduous hardwood native to the eastern USA and southern Canada valued for its nuts and wood. Butternut’s survival is threatened by butternut canker, a disease caused by the exotic fungus Sirococcus clavigignenti-juglandacearum Nair, Kostichka & Kuntz. Field observations indicate that trees commonly called buartnut (a hybrid of butternut and its close congener Japanese walnut (Juglans ailantifolia × J. cinerea)) may be more resistant to butternut canker than is either parental species. Hybrids are difficult to distinguish morphologically from butternuts, and scientists have expressed concern over the possibility of range-wide genetic invasion by Japanese walnut via hybridization with butternut. We used pair-wise combinations of 40 random primers to screen bulked DNA pools of butternut, Japanese walnut, and buartnuts to identify genomic regions unique to Japanese walnut. We ultimately identified one ITS region marker, one chloroplast marker, one mitochondrial marker, and six nuclear markers. The utility of the markers for identifying hybrids was tested and verified using more than 190 genotypes. The markers will be used to identify buartnut hybrids based on the presence of introgressed genomic fragments inherited from Japanese walnut. We confirmed that hybrids have a complex genetic history and present features of the parental species in all possible combinations. These results will assist in the identification and testing of (non-hybrid) butternut for breeding and reintroduction of the species to its former habitats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aradhya MK, Potter D, Gao F, Gao F, Simon CJ (2007) Molecular phylogeny of Juglans (Juglandaceae): a biogeographic perspective. Tree Genet Genomes 3:363–378

    Article  Google Scholar 

  • Baldwin BG (1992) Phylogenetic utility of the internal transcribed spacers of nuclear ribosomal DNA in plants: an example from the compositae. Mol Phylogenet Evol 1:3–16

    Article  PubMed  CAS  Google Scholar 

  • Baldwin BG, Sanderson MJ, Porter JM, Wojciechowski MF, Campbell CS, Donoghue MJ (1995) The ITS region of nuclear ribosomal DNA: a valuable source of evidence on angiosperm phylogeny. Ann Mo Bot Gard 82:247–277

    Article  Google Scholar 

  • Bixby WG (1919) The butternut and the Japan walnut. Am Nut J 10:76–83

    Google Scholar 

  • Borsch T, Hilu KW, Quandt D, Wilde V, Neinhuis C, Barthlott W (2003) Noncoding plastid trnT-trnF sequences reveal a well resolved phylogeny of basal angiosperms. J Eovl Biol 16:558–576

    Article  CAS  Google Scholar 

  • Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull 19:11–15

    Google Scholar 

  • Doyle JJ, Doyle JL (1990) Isolation of plant DNA from fresh tissue. Focus 12:13–15

    Google Scholar 

  • Elsh J, McClelland M (1991) Genomic fingerprinting using arbitrarily primed PCR and a matrix of pairwise combinations of primers. Nucl Acids Res 19:5275–5279

    Google Scholar 

  • Farinhό M, Coelho P, Monteiro A, Leitaõ J (2007) SCAR and CAPS markers flanking the Brassica oleracea L. Pp523 downy mildew resistance locus demarcate a genomic region syntenic to the top arm end of Arabidopsis thaliana L. chromosome 1. Euphytica 157:215–221

    Article  Google Scholar 

  • Farrar JL (1995) Trees in Canada. Natural Resources Canada, Canadian Forest Service, Ottawa, p 502

    Google Scholar 

  • Foroni I, Woeste K, Monti LM, Rao R (2007) Identification of ‘Sorrento’ walnut using simple sequence repeats (SSRs). Genet Resour Crop Ev 54:1081–1094

    Article  Google Scholar 

  • Germain E, Hanquier I, Monet R (1993) Identification of eight Juglans spp. and their interspecific hybrids by isoenzymatic electrophoresis. Acta Hort 311:73–81

    Google Scholar 

  • Harrison KJ, Hurley JE (1998) Butternut canker—a first record for New Brunswick. Canadian Forest Service—Atlantic Forestry Center Technical Note No. 315

  • Hoban SM, McCleary TS, Schlarbaum SE, Romero-Severson J (2009) Geographically extensive hybridization between the forest trees American butternut and Japanese walnut. Biol Lett 5:324–327. doi:10.1098/rsbl.2009.0031

    Article  PubMed  Google Scholar 

  • Hufford KM, Mazer SJ (2003) Plant ecotypes: genetic differentiation in the age of ecological restoration. Trends Ecol Evol 18:147–155

    Article  Google Scholar 

  • Konieczny A, Ausubel FM (1993) A procedure for mapping Arabidopsis mutations using co-dominant ecotype-specific PCR-based markers. Plant J 4:403–410

    Article  PubMed  CAS  Google Scholar 

  • Lefort F, Douglas GC (1999) An efficient micro-method of DNA isolation from mature leaves of four hardwood tree species Acer, Fraxinus, Prunus and Quercus. Ann For Sci 56:259–263

    Article  Google Scholar 

  • Liston A, Robinson WA, Piñero D, Alvarez-Buylla ER (1999) Phylogenetics of Pinus (Pinaceae) based on nuclear ribosomal DNA internal transcribed spacer region sequences. Mol Phylogenet Evol 11:95–109

    Article  PubMed  CAS  Google Scholar 

  • Manning WE (1978) The classification within the Juglandaceae. Ann Mo Bot Gard 65:1058–1087

    Article  Google Scholar 

  • Marshall HD, Newton C, Ritland K (2002) Chloroplast phylogeography and evolution of highly polymorphic microsatellites in lodgepole pine (Pinus contorta). Theor Appl Genet 104:367–378

    Article  CAS  Google Scholar 

  • McCleary TS, Robichaud RL, Nuanes S, Anagnostakis SL, Schlarbaum SE, Romero-Severson J (2009) Four cleaved amplified polymorphic sequence (CAPS) markers for the detection of the Juglans ailantifolia chloroplast in putatively native J. cinerea populations. Mol Ecol Resour 9:525–527

    Article  CAS  Google Scholar 

  • McIlwrick KS, Wetzel TB, Forbes K (2000) Ex situ conservation of American chestnut (Castanea dentata [Marsh.]) and butternut (Juglans cinerea L.), a review. For Chron 76:765–774

    Google Scholar 

  • Michler CH, Pijut PM, Jacobs DF, Meilan R, Woeste KE, Ostry ME (2005) Improving disease resistance of butternut (Juglans cinerea), a threatened fine hardwood: a case of single tree selection through genetic improvement and deployment. Tree Physiol 26:121–128

    Article  Google Scholar 

  • Morin R, Beaulieu J, Deslauriers M, Daoust G, Bousquet J (2000) Low genetic diversity at allozyme loci in Juglans cinerea. Can J Bot 78:1238–1243

    CAS  Google Scholar 

  • Nair VMG, Kostichka CJ, Kuntz JE (1979) Sirococcus clavigignenti-juglandacearum: an undescribed species causing canker on butternut. Mycologia 71:641–646

    Article  Google Scholar 

  • Ohwi J (1965) In: Meyer FG, Walker EH (eds) Flora of Japan. Smithsonian Institution, Washington, D.C., p 1067

    Google Scholar 

  • Olmstead RG, Palmer JD (1994) Chloroplast DNA systematic: a review of methods and data analysis. Am J Bot 81:1205–1224

    Article  CAS  Google Scholar 

  • Orchard LP (1984) Butternut canker: Host range, disease resistance, seedling-disease reactions, and seed-borne transmission. Dissertation, University of Wisconsin

  • Ostry ME (1997) Sirococcus clavigignenti-juglandacearum on heartnut (Juglans ailantifolia var. cordiformis). Plant Dis 81:1461

    Article  Google Scholar 

  • Ostry ME (1998) Butternut canker: a current example of the vulnerability of forest trees. In: Carter NE (comp.). Proc NE For Pest Council Annu Mtg, Fredericton, New Brunswick, Canada, p 4148

  • Ostry ME, Pijut PM (2000) Butternut: an underused resource in North America. HortTechnology 10:302–306

    Google Scholar 

  • Ostry ME, Woeste K (2004) Spread of butternut canker in North America, host range, evidence of resistance within butternut populations and conservation genetics. Proceeding of the 6th Walnut Council Research Symposium, pp 114–120

  • Ostry ME, Mielke ME, Skilling DD (1994) Butternut-strategies for managing a threatened tree. Gen Tech Rep NC-165. U.S. Department of Agriculture, Forest Service, North Central Forest Experiment Station, St. Paul, p7

  • Potter D, Gao F, Baggett S, McKenna JR, McGranahan GH (2002) Defining the sources of Paradox: DNA sequence markers for North American walnut (Juglans L.) species and hybrids. Sci Hortic 94:157–170

    CAS  Google Scholar 

  • Rahman M, McVetty PBE, Li G (2007) Development of SRAP, SNP and multiplexed SCAR molecular markers for the major seed coat color gene in Brassica rapa L. Theor Appl Genet 115:1101–1107

    Article  PubMed  CAS  Google Scholar 

  • Rink G (1990) Juglans cinera L. butternut. In: Burns RM, Honkala BH (tech coords) Silvics of North America, vol 2. Hardwoods. USDA For Serv Agric Handbook 654, Washington, pp 386–390

  • Robichaud RL, Glaubitz JC, Rhodes OE, Woeste K (2006) A robust set of black walnut microsatellites for parentage and clonal identification. New Forest 32:179–196

    Article  Google Scholar 

  • Ross-Davis A, Woeste KE (2008) Microsatellite markers for Juglans cinerea L. and their utility in other Juglandaceae. Conserv Genet 9:465–469

    Article  CAS  Google Scholar 

  • Ross-Davis A, Ostry M, Woeste KE (2008a) Genetic diversity of butternut (Juglans cinerea) and implications for conservation. Can J For Res 38:899–907

    Article  CAS  Google Scholar 

  • Ross-Davis A, Huang Z, Mckenna J, Ostry M, Woeste K (2008b) Morphological and molecular methods to identify butternut (Juglans cinerea) and butternut hybrids: relevance to butternut conservation. Tree Physiol 28:1127–1133

    PubMed  CAS  Google Scholar 

  • Ruf S, Karcher D, Bock R (2007) Determining the transgene containment level provided by chloroplast transformation. Proc Natl Acad Sci 104:6998–7002

    Article  PubMed  CAS  Google Scholar 

  • Stanford A, Harden R, Parks CR (2000) Phylogeny and biogeography of Juglans (Juglandaceae) based on matK and ITS sequence data. Am J Bot 87:872–882

    Article  PubMed  CAS  Google Scholar 

  • Victory ER, Glaubitz JC, Rhodes OE, Woeste KE (2006) Genetic homogeneity in Juglans nigra (Juglandaceae) at nuclear microsatellites. Am J Bot 93:118–126

    Article  CAS  Google Scholar 

  • Williams RD (1990) Juglans nigra L., black walnut. In: Burns RM, Honkala BH (tech coords) Silvics of North America, vol 2. Hardwoods. USDA For Serv Agric Handbook 654, Washington, pp 391–399

  • Williams JG, Kubelik AR, Livak KJ, Rafalski JA, Tingey SV (1990) DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res 18:6531–6535

    Article  PubMed  CAS  Google Scholar 

  • Woeste K, Pijut PE (2009) The peril and potential of butternut. Arnoldia 66:2–12

    Google Scholar 

  • Woeste K, McGranahan GH, Bernatzky R (1996) Randomly amplified polymorphic DNA loci from a walnut backcross [(Juglans hindsii × J. regia) × J. regia]. J Am Soc Hortic Sci 121:358–361

    CAS  Google Scholar 

  • Woeste K, Farlee L, Ostry M, McKenna J, Weeks S (2009) A forest manager’s guide to butternut. North J Appl For 26:9–14

    Google Scholar 

  • Won H, Renner SS (2005) The chloroplast trnT-trnF region in the seed plant lineage Gnetales. J Mol Evol 61:425–436

    Article  PubMed  CAS  Google Scholar 

  • Yan Z, Denneboom C, Hattendorf A, Dolstra O, Debener T, Stam P, Visser PB (2005) Construction of an integrated map of rose with AFLP, SSR, PK, RGA, RFLP, SCAR and morphological markers. Theor Appl Genet 110:766–777

    Article  PubMed  CAS  Google Scholar 

  • Yang H, Korban SS (1996) Screening apples for OPD20/600 using sequence-specific primers. Theor Appl Genet 92:263–266

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Thanks to John McLaughlin, Barbara Crane, and Paul Berrang for their helpful comments during the preparation of the manuscript. The use of trade names is for the information and convenience of the reader and does not imply official endorsement or approval by the United States Department of Agriculture or the Forest Service of any product to the exclusion of others that may be suitable. The authors thank Hannah Bergeman, James McKenna, Zhonglian Huang, and Lisa Worthen for their assistance and the USDA National Clonal Germplasm Repositories in Davis, CA and Corvallis, OR for samples. Partial funding for this research was provided by the Indiana Nature Conservancy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keith E. Woeste.

Additional information

Communicated by A. Kremer

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, P., Woeste, K.E. DNA markers identify hybrids between butternut (Juglans cinerea L.) and Japanese walnut (Juglans ailantifolia Carr.). Tree Genetics & Genomes 7, 511–533 (2011). https://doi.org/10.1007/s11295-010-0352-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11295-010-0352-4

Keywords

Navigation