Skip to main content

Advertisement

Log in

Somatic embryogenesis in forestry with a focus on Europe: state-of-the-art, benefits, challenges and future direction

  • Review
  • Published:
Tree Genetics & Genomes Aims and scope Submit manuscript

Abstract

Vegetative propagation of forest trees offers advantages to both tree breeders and the forest industry. This review will describe benefits, type of vegetative propagation, and its integration into breeding programmes. Of all of the different methods for vegetative propagation, only rooted cuttings and somatic embryogenesis (and the combined use of both) offer any practical methods for large-scale commercial use. However, it is very difficult to fully appreciate the overall level of activity of the research and application of somatic embryogenesis of forest trees. Publications and reports only highlight a small fraction of the ongoing work. To this end, a survey was conducted across Europe (under EU Research Infrastructure Concerted Action “Treebreedex”) to document the species involved, the state-of-the-art of somatic embryogenesis, its stage of development and its application in tree improvement programmes and to commercial forestry. The results of this survey are presented and discussed. In addition, this review presents the challenges (biological, economic, public acceptance and regulatory) and their relationships to European forestry. Finally, a strategy to promote the use of this technology is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aidun CK, Egertsdotter EMU (2012) Fluidics-based automation of clonal propagation via somatic embryogenesis: SE-Fluidics System. In: Proceedings of the IUFRO Working Party 2.09.02: “Somatic Embryogenesis of Trees” conference on “Integrating vegetative propagation, biotechnologies and genetic improvement for tree production and sustainable forest management” June, 25–28 2012, Brno, Czech Republic, S3-3

  • Attree SM, Fowke LC (1993) Embryogeny of gymnosperms: advances in synthetic seed technology of conifers. Plant Cell Tissue Organ Cult 35:1–35

    Article  CAS  Google Scholar 

  • Attree SM, Pomeroy MK, Fowke LC (1992) Manipulation of conditions for the culture of somatic embryos of white spruce for improved triacylglycerol biosynthesis and desiccation tolerance. Planta 187:395–404

    Article  CAS  Google Scholar 

  • Bonga JM, Klimaszewska KK, von Aderkas P (2010) Recalcitrance in clonal propagation, in particular of conifers. Plant Cell Tissue Organ Cult 100:241–254

    Article  Google Scholar 

  • Burg K, Helmersson A, Bozhkov P, von Arnold S (2007) Developmental and genetic variation in nuclear microsatellite stability during somatic embryogenesis in pine. J Exp Bot 58:687–698

    Article  PubMed  CAS  Google Scholar 

  • Cairney J, Pullman GS (2007) The cellular and molecular biology of conifer embryogenesis. New Phytol 176:511–536

    Article  PubMed  CAS  Google Scholar 

  • Carron MP, Lardet L, Leconte A, Dea BG, Keli J, Granet F, Julien J, Teerawatanasuk K, Montoro P (2009) Field trials network emphasizes the improvement of growth and yield through micropropagation in rubber tree (Hevea brasiliensis, Muëll.-Arg.). Acta Horticult 812:485–492

    Google Scholar 

  • Cervelli R, Senaratna T (1995) Economic aspects of somatic embryogenesis. In: Aitken-Christie J, Kozai T, Smith ML (eds) Automation and developmental control in plant tissue culture. Kluwer Academic, Dordrecht, pp 29–64

    Chapter  Google Scholar 

  • Chalupa V (1985) Somatic embryogenesis and plantlet regeneration from cultured immature and mature embryos of Picea abies (L.) Karst. Comm Inst For Cech 14:57–63

    Google Scholar 

  • Chalupa V (2000) In vitro propagation of mature trees of pedunculate oak (Quercus robur L.). J For Sci 46:537–542

    CAS  Google Scholar 

  • Cheliak WM, Dancik BP (1982) Genetic diversity of natural populations of a clone-forming tree Populus tremuloides. Can J Genet Cytol 24:611–616

    Google Scholar 

  • Corredoira E, Valladares S, Vieitez A (2006a) Morphohistological analysis of the origin and development of somatic embryos from leaves of mature Quercus robur. In Vitro Cell Dev Biol Plant 42:525–533

    Article  Google Scholar 

  • Corredoira E, Ballester A, Vieitez FJ, Vieitez AM (2006b) Somatic embryogenesis in chestnut. In: Mujib A, Samaj J (eds) Somatic embryogenesis. Plant Cell Monographs 2. Springer, Berlin, pp 177–199

    Chapter  Google Scholar 

  • Dai J, Vendrame WA, Merkle SA (2004) Enhancing the productivity of hybrid yellow-poplar and hybrid sweetgum embryogenic cultures. In Vitro Cell Dev Biol Plant 40:376–383

    Article  Google Scholar 

  • Dean CA (2010) Genetic parameters of somatic clones of coastal Douglas-fir for growth, stem and wood traits at 6 1/2 or 7 1/2 Years in Washington and Oregon, USA. Silvae Genet 59:107–112

    Google Scholar 

  • Dean CA, Welty DE, Herold GE (2009) Performance and genetic parameters of somatic and zygotic progenies of coastal Douglas-fir at 71/2 years across Washington and Oregon, USA. Silvae Genet 58:212–219

    Google Scholar 

  • Ducos J-P, Gibault E, Broun P, Lambot C (2011) Coffee propagation by somatic embryogenesis at Nestlé R&D Center-Tours. In: Park YS, Bonga JM, Park SY, Moon HK (eds) Proceedings of the IUFRO Working Party 2.09.02: Somatic embryogenesis of trees, advances in somatic embryogenesis of trees and its application for the future forests and plantations August 19–21, 2010, Suwon, Republic of Korea. pp 68–73. ISBN 978-89-8176-819-5

  • Etienne H, Bertrand B, Ribas A, Lashermes P, Malo E, Montagnon C, Alpizar E, Bobadilla R, Simpson J, Dechamp E, Jourdan I Georget F (2011) Current applications of coffee (Coffea arabica) somatic embryogenesis for industrial propagation of elite heterozygous materials in Central America and Mexico. In: Park YS, Bonga JM, Park SY, Moon HK (eds) Proceedings of the IUFRO Working Party 2.09.02: Somatic embryogenesis of trees advances in somatic embryogenesis of trees and its application for the future forests and plantations August 19–21, 2010, Suwon, Republic of Korea. pp 59–67. ISBN 978-89-8176-819-5

  • Find J, Krogstrup P (2008) Integration of biotechnology, robot technology and visualisation technology for development of methods for automated mass production of elite trees. Working papers of the Finnish Forest Research Institute 114:72–77

  • Grossnickle SC (2011) Tissue culture of conifer seedlings-20 years on: viewed through the lens of seedling quality. In Riley LE, Haase DL, Pinto JR, technical coordinators. National Proceedings: Forest and Conservation Nursery Associations-2010. Proc. RMRS-P-65. Fort Collins, CO: USDA Forest Service, Rocky Mountain Research Station, pp. 139–146

  • Grossnickle SC, Pait J (2008) Somatic embryogenesis tissue cultures for applying varietal forestry to conifer species. National Nursery Proceedings 2007. USDA Forest Service Proceedings RMRS-P-57, pp. 135–139

  • Gupta PK, Timmis R (2005) Mass propagation of conifer trees in liquid cultures—progress towards commercialization. Plant Cell Tissue Organ Cult 81:339–346

    Article  Google Scholar 

  • Gutmann M, von Aderkas P, Label P, Lelu M-A (1996) Effects of abscisic acid on somatic embryo maturation of hybrid larch. J Exp Bot 47:1905–1917

    Article  CAS  Google Scholar 

  • Hakman I, Fowke LC, von Arnold S, Eriksson T (1985) The development of somatic embryos in tissue cultures initiated from immature embryos of Picea abies (Norway spruce). Plant Sci 38:53–59

    Article  Google Scholar 

  • Hernández I, Celestino C, Toribio M (2003) Vegetative propagation of Quercus suber L. by somatic embryogenesis. I. Factors affecting the induction in leaves from mature cork oak trees. Plant Cell Rep 21:759–764

    PubMed  Google Scholar 

  • Hernández I, Cuenca B, Carneros E, Alonso-Blázquez N, Ruiz M, Celestino C, Ocaña L, Alegre J, Toribio M (2011) Application of plant regeneration of selected cork oak trees by somatic embryogenesis to implement multivarietal forestry for cork production. Tree For Sci Biotechnol 5:19–26

    Google Scholar 

  • Högberg KA, Ekberg I, Norell L, von Arnold S (1998) Integration of somatic embryogenesis in a tree breeding programme: a case study with Picea abies. Can J For Res 28:1536–1545

    Article  Google Scholar 

  • Högberg KA, Bozhkov PV, Gronroos R, von Arnold S (2001) Critical factors affecting ex vitro performance of somatic embryo plants of Picea abies. Scand J For Res 15:1–10

    Google Scholar 

  • Högberg KA, Bozhkov PV, von Arnold S (2003) Early selection improves clonal performance and reduces intraclonal variation of Norway spruce plants propagated by somatic embryogenesis. Tree Physiol 23:211–216

    Article  PubMed  Google Scholar 

  • Isik F, Li B, Frampton J (2003) Estimates of additive, dominance and epistatic variances from a clonally replicated test of loblolly pine. For Sci 49:77–88

    Google Scholar 

  • Klimaszewska K, Trontin JF, Becwar M, Devillard C, Park YS, Lelu-Walter M-A (2007) Recent progress on somatic embryogenesis in four Pinus spp. Tree For Sci Biotechnol 1:11–25

    Google Scholar 

  • Klimaszewska K, Overton C, Stewart D, Rutledge GR (2011) Initiation of somatic embryos and regeneration of plants from primordial shoots of 10-year-old somatic white spruce and expression proWles of 11 genes followed during the tissue culture process. Planta 233:635–647

    Article  PubMed  CAS  Google Scholar 

  • Kushairi A, Tarmizi AH, Zamzuri I, Ong-Abdullah M, Samsul Kamal R, Ooi SE, Rajanaidu N (2010) Production, performance and advances in oil palm tissue culture. In: Proceeding on Advances in Oil Palm Tissue Culture. The International Society for Oil Palm Breeders (ISOPB). Yogyakarta, Indonesia

  • Lambeth CC, Ritchie GA, Stanton B (1994) Applied vegetative propagation programmes in forestry. In: Foster GS, Diner AM (eds) Applications of vegetative propagation in forestry. U.S. For. Serv. South. For. Exp. Stn. Gen. Tech. Rep. SO-108, pp. 123–136

  • Legere A, Payette S (1981) Ecology of a black spruce (Picea mariana) clonal population in the hemiartic zone, northern Quebec: population dynamics and spatial development. Arct Alp Res 13:261–276

    Article  Google Scholar 

  • Lelu-Walter M-A, Paques LE (2009) Simplified and improved somatic embryogenesis of hybrid larches (Larix × eurolepis and Larix × marschlinsii). Perspectives for breeding. Ann For Sci 66(104):p1–104p10

    Google Scholar 

  • Lelu-Walter MA, Bernier-Cardou M, Klimaszewska K (2006) Simplified and improved somatic embryogenesis for clonal propagation of Pinus pinaster. Plant Cell Rep 25:767–776

    Article  PubMed  CAS  Google Scholar 

  • Lelu-Walter MA, Bernier-Cardou M, Klimaszewska K (2008) Clonal plant production from self- and cross-pollinated seed families of Pinus sylvestris (L.) through somatic embryogenesis. Plant Cell Tiss Org Cult 92:31–45

    Article  Google Scholar 

  • Lindgren D (2008) A way to utilise the advantage of clonal forestry for Norway spruce? Working papers of the Finnish Forest Research Institute 114: 8–15

  • Lipavská H, Konrádová H (2004) Somatic embryogenesis in conifers: the role of carbohydrate metabolism. In Vitro Cell Dev Biol Plant 40:23–30

    Article  Google Scholar 

  • Lulsdorf MM, Tautorus TE, Kikcio SI, Bethune TD, Dunstan DI (1993) Germination of encapsulated embryos of interior spruce (Picea glauca engelmannii complex) and black spruce (Picea mariana Mill.). Plant Cell Rep 12:385–389

    Google Scholar 

  • Mallón R, Covelo P, Vieitez AM (2012) Improving secondary embryogenesis in Quercus robur: application of temporary immersion for mass propagation. Trees Struct Funct 26:731–741

    Article  Google Scholar 

  • Marum L, Rocheta M, Maroco J, Oliveira MM, Miguel C (2009) Analysis of genetic stability at SSR loci during somatic embryogenesis in maritime pine (Pinus pinaster). Plant Cell Rep 28:673–682

    Article  PubMed  CAS  Google Scholar 

  • MCPFE (2007) State of Europe’s Forests 2007. The MCPFE report on sustainable forest management in Europe. Ministerial Conference on the Protection of Forests in Europe, Warsaw Poland, Publisher, 247p. ISBN-10: 83-922396-8-7

  • Menzies MI, Aimers-Halliday J (1997) Propagation options for clonal forestry with Pinus radiata. In: Burdon RD, Moore JM (eds) IUFRO’97 Genetics of radiata pine, FRI Forest Research Institute, Rotorua, New Zealand, Bulletin 203: 256–263

  • Merkle S, Cunningham M (2011) Southern hardwood varietal forestry: a new approach to short-rotation woody crops for biomass energy. J For 109:7–14

    Google Scholar 

  • Merkle SA, Nairn CJ (2005) Hardwood tree biotechnology. In Vitro Cell Dev Biol Plant 41:602–619

    Article  CAS  Google Scholar 

  • Meuwissen TH, Hayes BJ, Goddard ME (2001) Prediction of total genetic value using genome-wide dense marker maps. Genetics 157:1819–1829

    PubMed  CAS  Google Scholar 

  • Minghe L, Ritchie GA (1999) Eight hundred years of clonal forestry in China: I. Traditional afforestation with Chinese fir (Cunninghamia lanceolata (Lamb.) Hook.). New Forest 18:131–142

    Article  Google Scholar 

  • Niskanen AM, Stenvall N, Pakkanen A, Pulkkinen P (2008) Comparison of growth and stem form characters of Pinus sylvestris clones and seedlings of the same origin in a 10-year field trial. Scand J For Res 23:484–490

    Article  Google Scholar 

  • Olesen РO (1978) On cyclophysis and topophysis. Silvae Genet 27:173–178

    Google Scholar 

  • Pâques M, Bercetche J, Palada M (1995) Prospects and limitations of somatic embryogenesis of Picea abies. In: Jain S, Gupta P, Newton R (eds) Somatic embryogenesis in woody plants, vol 1. Kluwer, Dordrecht, pp 399–414

    Google Scholar 

  • Park Y-S (2002) Implementation of conifer somatic embryogenesis in clonal forestry: technical requirements and deployment considerations. Ann For Sci 59:651–656

    Article  Google Scholar 

  • Park Y-S, Barrett JD, Bonga JM (1998) Application of somatic embryogenesis in high-value clonal forestry: deployment, genetic control, and stability of cryopreserved clones. In Vitro Cell Dev Biol Plant 34:231–239

    Article  Google Scholar 

  • Pijut PM, Lawson SS, Michler CH (2011) Biotechnological efforts for preserving and enhancing temperate hardwood tree biodiversity, health, and productivity. In Vitro Cell Dev Biol Plant 47:123–147

    Article  Google Scholar 

  • Rao PS (1965) In vitro induction of embryonal proliferation in Santalum album L. Phytomorph 15:175–179

    CAS  Google Scholar 

  • Salaj T, Blehová A, Salaj J (2007) Embryogenic suspension cultures of Pinus nigra Arn.: growth parameters and maturation ability. Acta Physiol Plant 29:225–231

    Article  CAS  Google Scholar 

  • Sedjo RA (2004) Potential for biotechnology application in plantation forestry. In: Walter C, Carson M (eds) Plantation forest biotechnology for the 21st century. Research Signpost, Kerala, pp 3–24

    Google Scholar 

  • Shelbourne CJA (1997) Genetics of adding value to the end-products of radiata pine. In: Burdon RD, Moore JM (eds), IUFRO 97 genetics of radiata pine, Proceedings of NZ FRI-IUFRO Conference 1–5 December, Rotorua, New Zealand. FRI Bull 203: pp 129–141

  • Sorensson C (2006) Varietal pines boom in the US south. NZ J For 51:34–40

    Google Scholar 

  • Stasolla C, Kong L, Yeung EC, Thorpe T (2002) Maturation of somatic embryos in conifers: morphogenesis, physiology, biochemistry, and molecular biology. In Vitro Cell Dev Plant Biol 38:93–105

    Article  CAS  Google Scholar 

  • Stelzer HE, Goldfarb B (1997) Implementing clonal forestry in the southeastern United States: SRIEG satellite workshop summary. Can J For 27:442–446

    Google Scholar 

  • Suttton B (2002) Commercial delivery of genetic improvement to conifer plantations using somatic embryogenesis. Ann Sci For 59:657–661

    Article  Google Scholar 

  • Timmis R (1998) Bioprocessing for tree production in the forest industry: conifer somatic embryogenesis. Biotechnol Prog 14:156–166

    Article  CAS  Google Scholar 

  • Toda R (1974) Vegetative propagation in relation to Japanese forest tree improvement. N Z J For Sci 4:410–417

    Google Scholar 

  • Valbuena-Carabaña M, González-Martínez SC, Gil L (2008) Coppice forests and genetic diversity: a case study in Quercus pyrenaica Willd. from Central Spain. Forest Ecol Man 254:225–232

    Article  Google Scholar 

  • Vieitez AM, Corredoira E, Martínez MT, San-José MC, Sánchez C, Valladares S, Vidal N, Ballester A (2011) Application of biotechnological tools to Quercus improvement. Eur J Forest Res 131:519–539

    Article  Google Scholar 

  • Wahid N, Rainville A, Lamhamedi MS, Margolis HA, Beaulieu J, Deblois J (2012) Genetic parameters and performance stability of white spruce somatic seedlings in clonal tests. Forest Ecol Man 270:45–53

    Article  Google Scholar 

  • Zhang C, Timmis R, Hu W-S (1999) A neural network based pattern recognition system for somatic embryos of Douglas fir. Plant Cell Tissue Organ Cult 56:25–35

    Article  Google Scholar 

  • Zobel B (1993) Clonal forestry with the eucalypts. In: Libby WJ, Ahuja MR (eds) Clonal forestry, vol 2. Springer, Berlin, pp 139–148

    Chapter  Google Scholar 

Download references

Acknowledgments

This work has been conducted under Research Infrastructure Concerted Action “Treebreedex” (http://treebreedex.eu, contract RICA-CT-2006-026076). The authors gratefully thank all the colleagues for their contribution to the questionnaire: Arillaga I, Aronen T, Barsukova A, Bastien C, Briza J, Budimir S, Ćalić-Dragosavac D, Capuana M, Ewald D, Fenning T, Find J, Gyulai G, Hakman I, Hazubska-Przybyl T, Högberg K-A, Krajnakova J, Kulagin D, Kuusiene S, Kvaalen H, Häggman H, Lee S, Lipavska H, Malá J, Naujoks G, Nilsen A, Palada M, Miguel C, Mihaljevic S, Misson J-P, Moncalean Guillén P, Pinto G, Raffin A, Rodriguez R, Salaj T, Szczygieł K, Tretyakova I, Tsvetkov I, Vágner M, Vieitez A, Vitaliy K, Vitamvas J, von Arnold S, Wilhelm E, Zdravković-Korać S, Ziauka J, Zoglauer K.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marie-Anne Lelu-Walter.

Additional information

Communicated by A. Abbott

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lelu-Walter, MA., Thompson, D., Harvengt, L. et al. Somatic embryogenesis in forestry with a focus on Europe: state-of-the-art, benefits, challenges and future direction. Tree Genetics & Genomes 9, 883–899 (2013). https://doi.org/10.1007/s11295-013-0620-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11295-013-0620-1

Keywords

Navigation