Skip to main content
Log in

Modularität in der verteilten Entwicklung komplexer Systeme: Chancen, Grenzen, Implikationen

  • State-of-the-art-Artikel
  • Published:
Journal für Betriebswirtschaft Aims and scope Submit manuscript

Abstract

In complex systems development, firms need to ensure the effective interplay of numerous interdependent elements. In order to still reap the benefits of specialization and division of labor, decomposing a system into modules with well-defined interfaces is considered an efficient design principle. However, a number of studies have recently started to explore the fundamental limits and implications of modularity from the perspectives of evolutionary economics and complexity theory. Because complex systems are at best “nearly decomposable” and because boundedly rational designers cannot account for all interdependencies, modular systems are never free from (potentially unknown) intermodular interdependencies that impede their fully autonomous and distributed development. As complexity is rising in various domains, a fundamental understanding of the contributions, limitations and implications of modularity in distributed systems development becomes necessary and offers broad opportunities for future research.

Zusammenfassung

Die Entwicklung komplexer Systeme stellt Unternehmen vor die Herausforderung, das effektive Zusammenwirken einer Vielzahl interdependenter Elemente zu gewährleisten. Eine Systemdekomposition in Module mit klar definierten Schnittstellen gilt dabei als effiziente Designlösung, um dennoch die Vorteile von Spezialisierung und Arbeitsteilung zu nutzen. In jüngerer Zeit beschäftigen sich zahlreiche Arbeiten, insbesondere aus evolutionsökonomischer und komplexitätstheoretischer Perspektive, mit den prinzipiellen Grenzen und Implikationen der Modularität. Weil sich komplexe Systeme nicht perfekt zerlegen lassen und begrenzt rationale Designer nicht alle Interdependenzen überblicken, weisen modulare Systeme häufig unbekannte intermodulare Interdependenzen auf. Eine vollständig verteilte Entwicklung komplexer Systeme auf Basis unabhängiger Module ist deshalb nicht möglich und auch nicht sinnvoll. Die in vielen Bereichen steigende Komplexität macht ein fundiertes Verständnis der Vorteile, Grenzen und Implikationen modularer Ansätze in der verteilten Systementwicklung notwendig und bietet breites Potential für zukünftige Forschung.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alexander C (1964) Notes on the synthesis of form. Harvard University Press, Cambridge

    Google Scholar 

  2. Baldwin CY, Clark KB (2000) Design rules: the power of modularity. MIT Press, Cambridge

    Google Scholar 

  3. Baldwin CY, Clark KB (2006) The architecture of participation: does code architecture mitigate free riding in the open source development model? Manage Sci 52:1116–1127

    Google Scholar 

  4. Bar-Yam Y (1997) Dynamics of complex systems. Addison-Wesley, Reading

    Google Scholar 

  5. Booch G, Maksimchuk RA, Engel MW, Young BJ, Conallen J, Houston KA (2007) Object-oriented analysis and design with applications. Addison-Wesley, Upper Saddle River

    Google Scholar 

  6. Brügge B, Dutoit AH (2004) Object-oriented software engineering: conquering complex and changing systems. Prentice Hall, Upper Saddle River

    Google Scholar 

  7. Brügge B, Harhoff D, Picot A, Creighton O, Fiedler M, Henkel J (2004) Open-Source-Software: Eine ökonomische und technische Analyse. Springer, Berlin

    Google Scholar 

  8. Brusoni S, Marengo L, Prencipe A, Valente M (2004) The value and costs of modularity: a cognitive perspective. Europ Manage Rev 4:121–132

    Google Scholar 

  9. Brusoni S, Prencipe A (2001) Unpacking the black box of modularity: technologies, products and organizations. Ind Corp Change 10:179–205

    Google Scholar 

  10. Brusoni S, Prencipe A (2006) Making design rules: a multidomain perspective. Organ Sci 17:179–189

    Google Scholar 

  11. Brusoni S, Prencipe A, Pavitt K (2001) Knowledge specialization, organizational coupling, and the boundaries of the firm: why do firms know more than they make? Admin Sci Quart 46:597–621

    Google Scholar 

  12. Burton RM, Obel B (1998) Strategic organizational diagnosis and design: developing theory for application. Kluwer, Dordrecht

    Google Scholar 

  13. Chapman WL, Rozenblit J, Bahill AT (2001) System design is an NP-complete problem. Syst Eng 4:222–229

    Google Scholar 

  14. Chesbrough H (2003) Towards a dynamics of modularity: a cyclical model of technical advance. In: Prencipe A, Davies A, Hobday M (eds) The business of systems integration. Oxford University Press, Oxford, pp 174–198

    Google Scholar 

  15. Cohen WM, Levinthal DA (1989) Innovation and learning: the two faces of R&D. Econ J 99:569–595

    Google Scholar 

  16. Cohen WM, Levinthal DA (1990) Absorptive capacity: a new perspective on learning and innovation. Admin Sci Quart 35:128–152

    Google Scholar 

  17. Cyert RM, March JG (1963) A behavioral theory of the firm. Prentice Hall, Englewood Cliffs

    Google Scholar 

  18. D’Adderio L (2004) Inside the virtual product: how organizations create knowledge through software. Edward Elgar, Cheltenham

    Google Scholar 

  19. Davies A, Hobday M (2005) The business of projects: managing innovation in complex products and systems. Cambridge University Press, Cambridge

    Google Scholar 

  20. Dietl H (1993) Institutionen und Zeit. Mohr, Tübingen

    Google Scholar 

  21. Dosi G, Hobday M, Marengo L, Prencipe A (2003) The economics of systems integration: towards an evolutionary interpretation. In: Hobday M, Prencipe A, Davies A (eds) The business of systems integration. Oxford University Press, Oxford, pp 95–113

    Google Scholar 

  22. Eisenhardt KM, Bhatia MM (2002) Organizational complexity and computation. In: Baum JAC (ed) Companion to organizations. Blackwell Publishers, Oxford, pp 442–466

    Google Scholar 

  23. Eppinger SD, Chitkara AR (2006) The new practice of global product development. MIT Sloan Manage Rev 49:22–30

    Google Scholar 

  24. Eppinger SD, Whitney DE, Smith R, Gebala D (1994) A model-based method for organizing tasks in product development. Res Eng Des 6:1–13

    Google Scholar 

  25. Erl T (2008) SOA principles of service design. Prentice Hall, Upper Saddle River

    Google Scholar 

  26. Ernst D (2005a) Internationalisation of innovation: why is chip design moving to Asia? Int J Innov Manage 9:47–73

    Google Scholar 

  27. Ernst D (2005b) Limits to modularity: reflections on recent developments in chip design. Industry Innovation 12:303–335

    Google Scholar 

  28. Ernst D, Kim L (2002) Global production networks, knowledge diffusion, and local capability formation. Res Policy 31:1417–1429

    Google Scholar 

  29. Ethiraj SK, Levinthal DA (2004) Modularity and innovation in complex systems. Manage Sci 50:159–173

    Google Scholar 

  30. Fleming L, Sorenson O (2001) Technology as a complex adaptive system: evidence from patent data. Res Policy 30:1019–1039

    Google Scholar 

  31. Fleming L, Sorenson O (2003) Navigating the technology landscape of innovation. MIT Sloan Manage Rev 44:15–23

    Google Scholar 

  32. Galbraith J (1973) Designing complex organizations. Addison-Wesley, Reading

    Google Scholar 

  33. Gavetti G, Levinthal DA (2000) Looking forward and looking backward: cognitive and experiential search. Admin Sci Quart 45:113–137

    Google Scholar 

  34. Göpfert J (1998) Modulare Produktentwicklung: Zur gemeinsamen Gestaltung von Technik und Organisation. Gabler, Wiesbaden

    Google Scholar 

  35. Hagedoorn J (2002) Inter-firm R&D partnerships: an overview of major trends and patterns since 1960. Res Policy 31:477–492

    Google Scholar 

  36. Hagel J, Brown JS (2001) Your next IT strategy. Harvard Bus Rev 79:105–113

    Google Scholar 

  37. Henderson R, Clark KB (1990) Architectural innovation: the reconfiguration of existing product technologies and the failure of established firms. Admin Sci Quart 35:9–30

    Google Scholar 

  38. Hobday M (1998) Product complexity, innovation and industrial organisation. Res Policy 26:689–710

    Google Scholar 

  39. Hobday M, Davies A, Prencipe A (2005) Systems integration: a core capability of the modern corporation. Ind Corp Change 14:1109–1143

    Google Scholar 

  40. Hobday M, Rush H, Tidd J (2000) Innovation in complex products and systems. Res Policy 29:793–804

    Google Scholar 

  41. Hoetker G (2006) Do modular products lead to modular organizations? Strateg Manage J 27:501–518

    Google Scholar 

  42. Hoetker G, Swaminathan A, Mitchell W (2007) Modularity and the impact of buyer-supplier relationships on the survival of suppliers. Manage Sci 53:178–191

    Google Scholar 

  43. Holland JH, Holyoak KJ, Nisbett RE, Thagard PR (1986) Induction: processes of inference, learning, and discovery. MIT Press, Cambridge

    Google Scholar 

  44. Kauffman S (1993) Origins of Order: Self-organization and selection in evolution. Oxford University Press, New York

    Google Scholar 

  45. Kauffman S (1995) At home in the universe: the search for the laws of self-organization and complexity. Oxford University Press, New York

    Google Scholar 

  46. Khandwalla PN (1977) The design of organizations. Harcourt Brace Jovanovich, New York

    Google Scholar 

  47. Langlois RN (2002) Modularity in technology and organization. J Econ Behav Organ 49:19–37

    Google Scholar 

  48. Langlois RN (2003) The vanishing hand: the changing dynamics of industrial capitalism. Ind Corp Change 12:351–385

    Google Scholar 

  49. Levinthal DA (1997) Adaptation on rugged landscapes. Manage Sci 43:934–950

    Google Scholar 

  50. Levinthal DA, March JG (1982) A model of adaptive organizational search. J Econ Behav Organ 2:307–333

    Google Scholar 

  51. Levinthal DA, March JG (1993) The myopia of learning. Strateg Manage J 14:95–112

    Google Scholar 

  52. Loch CH, Terwiesch C (1998) Communication and uncertainty in concurrent engineering. Manage Sci 44:1032–1048

    Google Scholar 

  53. Loch CH, Terwiesch C, Thomke S (2001) Parallel and sequential testing of design alternatives. Manage Sci 47:663–678

    Google Scholar 

  54. Löwer UM (2006) Interorganisational standards: managing web services specifications for flexible supply chains. Physica, Heidelberg

    Google Scholar 

  55. MacCormack A, Rusnak J, Baldwin CY (2006) Exploring the structure of complex software designs: an empirical study of open source and proprietary code. Manage Sci 52:1015–1030

    Google Scholar 

  56. March JG (1991) Exploration and exploitation in organizational learning. Organ Sci 2:71–87

    Google Scholar 

  57. March JG, Simon HA (1958) Organizations. Wiley, New York

    Google Scholar 

  58. Marengo L, Dosi G (2005) Division of labor, organizational coordination and market mechanism in collective problem-solving. J Econ Behav Organ 58:303–326

    Google Scholar 

  59. Marengo L, Dosi G, Legrenzi P, Pasquali C (2000) The structure of problem-solving knowledge and the structure of organizations. Ind Corp Change 9:757–788

    Google Scholar 

  60. Mihm J, Loch C, Huchzermeier A (2003) Problem-solving oscillations in complex engineering projects. Manage Sci 49:733–750

    Google Scholar 

  61. Murmann JP, Frenken K (2006) Toward a systematic framework for research on dominant designs, technological innovations, and industrial change. Res Policy 35:925–952

    Google Scholar 

  62. Nelson RR, Winter SG (1982) An evolutionary theory of economic change. Harvard University Press, Cambridge

    Google Scholar 

  63. Newell A, Simon HA (1972) Human problem solving. Prentice Hall, Englewood Cliffs

    Google Scholar 

  64. O’Reilly T (1999) Lessons from open source software development. Commun ACM 42:33–37

    Google Scholar 

  65. Orton JD, Weick KE (1990) Loosely coupled systems: a reconceptualization. Acad Manage Rev 15:203–223

    Google Scholar 

  66. Parnas DL (1972) On the criteria to be used in decomposing systems into modules. Commun ACM 15:1053–1058

    Google Scholar 

  67. Pavitt K (2003) Specialization and systems integration: where manufacture and services still meet. In: Hobday M, Prencipe A, Davies A (eds) The business of systems integration. Oxford University Press, Oxford, pp 78–91

    Google Scholar 

  68. Picot A, Baumann O (2007) Die verteilte Entwicklung komplexer Systeme: Grenzen der Modularität und Fähigkeiten zur Systemintegration. In: Blum U, Eckstein A, Eckstein A (Hrsg) Wirtschaftsinformatik im Fokus der modernen Wissensökonomik – Festschrift für Professor Dr. Dr. h.c. Wolfgang Uhr. TUDpress, Dresden, pp 335–352

    Google Scholar 

  69. Picot A, Freudenberg H (1998) Neue organisatorische Ansätze im Umgang mit Komplexität. In: Adam D (Hrsg) Komplexitätsmanagement. Gabler, Wiesbaden, S 69–86

  70. Picot A, Reichwald R, Wigand RT (2003) Die grenzenlose Unternehmung. Gabler, Wiesbaden

    Google Scholar 

  71. Picot A, Ripperger T, Wolff B (1996) The fading boundaries of the firm: the role of information and communication technology. J Inst Theor Econ 152:65–79

    Google Scholar 

  72. Pisano GP (1990) The R&D boundaries of the firm: an empirical analysis. Admin Sci Quart 35:153–176

    Google Scholar 

  73. Pisano GP (1996) Learning-before-doing in the development of new process technology. Res Policy 25:1097–1119

    Google Scholar 

  74. Powell WW, Koput KW, Smith-Doerr L (1996) Interorganizational collaboration and the locus of innovation: networks of learning in biotechnology. Admin Sci Quart 41:116–145

    Google Scholar 

  75. Prencipe A (2000) Breadth and depth of technological capabilities in CoPS: the case of the aircraft engine control system. Res Policy 29:895–911

    Google Scholar 

  76. Prencipe A (2003) Corporate strategy and systems integration capabilities: managing networks in complex systems industries. In: Prencipe A, Davies A, Hobday M (eds) The business of systems integration. Oxford University Press, Oxford, pp 114–132

    Google Scholar 

  77. Prencipe A, Davies A, Hobday M (2003) The business of systems integration. Oxford University Press, Oxford

    Google Scholar 

  78. Rivkin JW, Siggelkow N (2003) Balancing search and stability: interdependencies among elements of organizational design. Manage Sci 49:290–311

    Google Scholar 

  79. Rivkin JW, Siggelkow N (2006) Organizing to strategize in the face of interactions: preventing premature lock-in. Long Rang Plann 39:591–614

    Google Scholar 

  80. Sako M (2003) Modularity and outsourcing: the nature of co-evolution of product architecture and organization architecture in the global automotive industry. In: Prencipe A, Davies A, Hobday M (eds) The business of systems integration. Oxford University Press, Oxford, pp 229–253

    Google Scholar 

  81. Sanchez R (1995) Strategic flexibility in product competition. Strategic Manage J 16:135–159

    Google Scholar 

  82. Sapolsky HM (2003) Inventing systems integration. In: Prencipe A, Davies A, Hobday M (eds) The business of systems integration. Oxford University Press, Oxford, pp 15–34

    Google Scholar 

  83. Schaefer S (1999) Product design partitions with complementary components. J Econ Behav Organ 38:311–330

    Google Scholar 

  84. Scheuble S (1998) Wissen und Wissenssurrogate: Eine Theorie der Unternehmung. Gabler, Wiesbaden

    Google Scholar 

  85. Schilling MA (2000) Toward a general modular systems theory and its application to interfirm product modularity. Acad Manage Rev 25:312–334

    Google Scholar 

  86. Schilling MA, Steensma HK (2001) The use of modular organizational forms: an industry-level analysis. Acad Manage J 44:1149–1168

    Google Scholar 

  87. Schumpeter JA (1939) Business cycles. McGraw-Hill, New York

    Google Scholar 

  88. Siggelkow N, Levinthal DA (2003) Temporarily divide to conquer: centralized, decentralized, and reintegrated organizational approaches to exploration and adaptation. Organ Sci 14:650–669

    Google Scholar 

  89. Siggelkow N, Rivkin JW (2005) Speed and search: designing organizations for turbulence and complexity. Organ Sci 16:101–122

    Google Scholar 

  90. Siggelkow N, Rivkin JW (2006) When exploration backfires: unintended consequences of multilevel organizational search. Acad Manage J 49:779–795

    Article  Google Scholar 

  91. Simon HA (1955) A behavioral model of rational choice. Q J Econ 69:99–118

    Google Scholar 

  92. Simon HA (1956) Rational choice and the structure of the environment. Psychol Rev 63:129–138

    Google Scholar 

  93. Simon HA (1962) The architecture of complexity. Proc Am Philosophical Soc 106:467–482

    Google Scholar 

  94. Simon HA (1991) Organizations and markets. J Econ Perspect 5:25–44

    Google Scholar 

  95. Simon HA (1996) The sciences of the artificial. MIT Press, Cambridge

    Google Scholar 

  96. Simon HA (2002) Near decomposability and the speed of evolution. Ind Corp Change 11:587–599

    Google Scholar 

  97. Sorenson O (2002) Interorganizational complexity and computation. In: Baum JAC (ed) Companion to organizations. Blackwell Publishers, Oxford, pp 664–685

    Google Scholar 

  98. Sosa ME, Eppinger SD, Rowles CM (2004) The misalignment of product architecture and organizational structure in complex product development. Manage Sci 50:1674–1689

    Google Scholar 

  99. Staudenmeyer N, Tripsas M, Tucci CL (2005) Interfirm modularity and its implications for product development. J Prod Innovat Manage 22:303–321

    Google Scholar 

  100. Steward DV (1981) The design structure system: a method for managing the design of complex systems. IEEE T Eng Manage 28:71–74

    Google Scholar 

  101. Stuart TE, Podolny JM (1996) Local search and the evolution of technological capabilities. Strategic Manage J 17:21–38

    Article  Google Scholar 

  102. Takeishi A (2001) Bridging inter- and intra-firm boundaries: management of supplier involvement in automobile product development. Strateg Manage J 22:403–433

    Google Scholar 

  103. Terwiesch C, Loch CH, De Meyer A (2002) Exchanging preliminary information in concurrent engineering: alternative coordination strategies. Organ Sci 13:402–419

    Google Scholar 

  104. Thomke S, Fujimoto T (2000) The effect of “front-loading” problem-solving on product development performance. J Prod Innovat Manage 17:128–142

    Google Scholar 

  105. Thompson JD (1967) Organizations in action. McGraw-Hill, New York

    Google Scholar 

  106. Tversky A, Kahneman D (1986) Rational choice and the framing of decisions. J Bus 59:251–278

    Google Scholar 

  107. Ulrich KT (1995) The role of product architecture in the manufacturing firm. Res Policy 24:419–440

    Google Scholar 

  108. Ulrich KT, Eppinger SD (2007) Product design and development. McGraw-Hill, New York

    Google Scholar 

  109. Veryard R (2001) The component-based business: plug and play. Springer, London

    Google Scholar 

  110. von Hippel E (1990) Task partitioning: an innovation process variable. Res Policy 19:407–418

    Google Scholar 

  111. von Hippel E (1994) Sticky information and the locus of problem solving: implications for innovations. Manage Sci 40:429–439

    Article  Google Scholar 

  112. Weick KE (1976) Educational organizations as loosely coupled systems. Admin Sci Quart 21:1–19

    Google Scholar 

  113. Wenzel S (2003) Organisation und Methodenauswahl in der Produktentwicklung. Herbert Utz, München

    Google Scholar 

  114. Williamson OE (1975) Markets and hierarchies: analysis and antitrust implications: a study in the economics of internal organization. Free Press, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arnold Picot.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Picot, A., Baumann, O. Modularität in der verteilten Entwicklung komplexer Systeme: Chancen, Grenzen, Implikationen. Journal für Betriebswirtschaft 57, 221–246 (2007). https://doi.org/10.1007/s11301-007-0029-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11301-007-0029-8

Schlüsselwörter

Keywords

Navigation