Skip to main content
Log in

A generalized model for metabolomic analyses: application to dose and time dependent toxicity

  • Original Article
  • Published:
Metabolomics Aims and scope Submit manuscript

Abstract

As metabolomic technology expands, validated techniques for analyzing highly dimensional categorical data are becoming increasingly important. This manuscript presents a novel latent vector-based methodology for analyzing complex data sets with multiple groups that include both high and low doses using orthogonal projections to latent structures (OPLS) coupled with hierarchical clustering. This general methodology allows complex experimental designs (e.g., multiple dose and time combinations) to be encoded and directly compared. Further, it allows for the inclusion of low dose samples that do not exhibit a strong enough individual response to be modeled independently. A dose- and time-responsive metabolomic study was completed to evaluate and demonstrate this methodology. Single doses (0.1–100 mg/kg body weight) of α-naphthylisothiocyanate (ANIT), a common model of hepatic cholestasis, were administered orally in corn oil to male Fischer 344 rats. Urine samples were collected pre-dose and daily through day-4 post-dose. Blood samples were collected pre and post-dose to assess indices of clinical toxicity. Urine samples were analyzed by 1H-NMR spectroscopy, and the spectra were adaptively binned to reduce dimensionality. The proposed methodology for NMR-based urinary metabolomics was sensitive enough to detect ANIT-induced effects with respect to both dose and time at doses below the threshold of clinical toxicity. A pattern of ANIT-dependent effects established at the highest dose was seen in the 50 and 20 mg/kg dose groups, an effect not directly identifiable with individual principal component analysis (PCA). Coupling the pattern found by the OPLS algorithm and hierarchical clustering revealed a relationship between the 100, 50 and 20 mg/kg dose groups, suggesting a characteristic effect of ANIT exposure. These studies demonstrate that the use of a metabolomics approach with flexible binning of 1H spectra and appropriate application of multivariate analyses can reveal biologically relevant information about the temporal metabolic perturbations caused by exposure and toxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Anderson, P. E., Mahle, D. A., Doom, T. E., Reo, N. V., DelRaso, N. J., & Raymer, M. L. (2010). Dynamic adaptive binning: An improved quantification technique for NMR spectroscopic data. Metabolomics. doi:10.1007/s11306-010-0242-7.

  • Anthony, M. L., Gartland, K. P., Beddell, C. R., Lindon, J. C., & Nicholson, J. K. (1994a). Studies of the biochemical toxicology of uranyl nitrate in the rat. Archives of Toxicology, 68, 43–53.

    PubMed  CAS  Google Scholar 

  • Anthony, M. L., Sweatman, B. C., Beddell, C. R., Lindon, J. C., & Nicholson, J. K. (1994b). Pattern recognition classification of the site of nephrotoxicity based on metabolic data derived from proton nuclear magnetic resonance spectra of urine. Molecular Pharmacology, 46, 199–211.

    PubMed  CAS  Google Scholar 

  • Azmi, J., Griffin, J. L., Shore, R. F., Holmes, E., & Nicholson, J. K. (2005). Chemometric analysis of biofluids following toxicant induced hepatotoxicity: A metabolomic approach to distinguish the effects of 1-naphthylisothiocyanate from its products. Xenobiotica, 35, 839–852.

    Article  PubMed  CAS  Google Scholar 

  • Beckwith-Hall, B. M., Nicholson, J. K., Nicholls, A. W., Foxall, P. J. D., Lindon, J. C., Connor, S. C., et al. (1998). Nuclear magnetic resonance spectroscopic and principle component analysis investigations into biochemical effects of three model hepatotoxins. Chemical Research in Toxicology, 11, 260–270.

    Article  PubMed  CAS  Google Scholar 

  • Chisholm, J. W., & Dolphin, P. J. (1996). Abnormal lipoproteins in ANIT-treated rat: A transient and reversible animal model of intrahepatic cholestasis. Journal of Lipid Research, 37, 1086–1098.

    PubMed  CAS  Google Scholar 

  • Clayton, T. A., Lindon, J. C., Everett, J. R., Charuel, C., Hanton, G., Le Net, J.-L., et al. (2004). Hepatotoxin-induced hypercreatinaemia and hypercreatinuria: Their relationship to one another, to liver damage and to weakened nutritional status. Archives of Toxicology, 78, 86–96.

    Article  PubMed  CAS  Google Scholar 

  • Davis, R. A., Charlton, A. J., Godward, J., Jones, S. A., Harrison, M., & Wilson, J. C. (2007). Adaptive binning: An improved binning method for metabolomics data using the undecimated wavelet transform. Chemometrics and Intelligent Laboratory Systems, 85, 144–154.

    Article  CAS  Google Scholar 

  • De Meyer, T., Sinnaeve, D., Van Gasse, B., Tsiporkova, E., Rietzschel, E. R., De Buyzere, M. L., et al. (2008). NMR-based characterization of metabolic alterations in hypertension using an adaptive, intelligent binning algorithm. Analytical Chemistry, 80, 3783–3790.

    Article  PubMed  Google Scholar 

  • Eriksson, L., Trygg, J., & Svante, W. (2009). PLS-Trees®, a top-down clustering approach. Journal of Chemometrics, 23, 569–580.

    Article  CAS  Google Scholar 

  • Fernie, A. R., Tretheway, R. N., Krotzky, A. J., & Willmitzer, L. (2004). Metabolite profiling: From diagnostics to systems biology. Nature Reviews Molecular Cell Biology, 5, 763–769.

    Article  PubMed  CAS  Google Scholar 

  • Forshed, J., Schuppe-Koistinen, I., & Jacobsson, S. P. (2003). Peak alignment of NMR signals by means of a genetic algorithm. Analytica Chimica Acta, 487, 189–199.

    Article  CAS  Google Scholar 

  • Holmes, E., Bonner, F. W., Sweatman, B. C., Lindon, J. C., Beddell, C. R., Rahr, E., et al. (1992a). Nuclear magnetic resonance spectroscopy and pattern recognition analysis of the biochemical processes associated with the progression of and recovery from nephrotoxic lesions in the rat induced by mercury(II) chloride and 2-bromoethanamine. Molecular Pharmacology, 42, 922–930.

    PubMed  CAS  Google Scholar 

  • Holmes, E., Nicholl, A. W., Lindon, J. C., Connor, S. C., Connelly, J. C., Haselden, J. N., et al. (2000). Chemometric models for toxicity classification based on NMR spectra of biofluids. Chemical Research in Toxicology, 13, 471–478.

    Article  PubMed  CAS  Google Scholar 

  • Holmes, E., Nicholl, A. W., Lindon, J. C., Ramos, S., Spraul, M., Neidig, P., et al. (1998a). Development of a model for classification of toxin-induced lesions using 1H NMR spectroscopy of urine combined with pattern recognition. NMR in Biomedicine, 11, 235–244.

    Article  PubMed  CAS  Google Scholar 

  • Holmes, E., Nicholson, J. K., Bonner, F. W., Sweatman, B. C., Beddell, C. R., Lindon, J. C., et al. (1992b). Mapping the biochemical trajectory of nephrotoxicity by pattern recognition of NMR urinalysis. NMR in Biomedicine, 5, 372–386.

    Article  Google Scholar 

  • Holmes, E., Nicholson, J. K., Nicholls, A. W., Lindon, J. C., Connor, S. C., Polley, S., et al. (1998b). The identification of novel biomarkers of renal toxicity using automatic data reduction techniques and PCA of proton NMR spectra of urine. Chemometrics and Intelligent Laboratory Systems, 44, 245–255.

    Article  CAS  Google Scholar 

  • Holmes, E., & Shockcor, J. P. (2000). Accelerated toxicity screening using NMR and pattern recognition-based methods. Current Opinion in Drug Discovery & Development, 3, 72–78.

    CAS  Google Scholar 

  • Jolliffe, I. T. (1986). Principal component analysis. New York: Springer.

    Google Scholar 

  • Lenz, E. M., Bright, J., Wilson, I. D., Morgan, S. R., & Nash, A. F. P. (2003). A 1H NMR-based metabolomics study of urine and plasma samples obtained from healthy human subjects. Journal of Pharmaceutical and Biomedical Analysis, 33, 1103–1115.

    Article  PubMed  CAS  Google Scholar 

  • Lindon, J. C., Holmes, E., & Nicholson, J. K. (2004a). Metabolomics: Systems biology in pharmaceutical research and development. Current Opinion in Molecular Therapeutics, 6, 265–272.

    PubMed  CAS  Google Scholar 

  • Lindon, J. C., Holmes, E., & Nicholson, J. K. (2004b). Toxicological applications of magnetic resonance. Progress in Nuclear Magnetic Resonance Spectroscopy, 45, 109–143.

    Article  CAS  Google Scholar 

  • Lindon, J. C., Nicholson, J. K., & Everett, J. R. (1999). NMR spectroscopy of biofluids. Annual Reports on NMR Spectroscopy, 38, 1–88.

    Article  CAS  Google Scholar 

  • Nicholson, J. K., Connelly, J. C., Lindon, J. C., & Holmes, E. (2002). Metabolomics: A platform for studying drug toxicity and gene function. Nature Reviews Drug Discovery, 1, 153–161.

    Article  PubMed  CAS  Google Scholar 

  • Nicholson, J. K., Lindon, J. C., & Holmes, E. (1999). ‘Metabolomics’: Understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data. Xenobiotica, 29, 1181–1189.

    Article  PubMed  CAS  Google Scholar 

  • Plaa, G. L., & Priestly, B. G. (1976). Intrahepatic cholestasis induced by drugs and chemicals. Pharmacological Reviews, 28, 207–273.

    PubMed  CAS  Google Scholar 

  • Reo, N. V. (2002). NMR-based metabolomics. Drug and Chemical Toxicology, 25, 375–382.

    Article  PubMed  CAS  Google Scholar 

  • Robertson, D. G. (2005). Metabolomics in toxicology: A review. Toxicological Sciences, 85, 809–822.

    Article  PubMed  CAS  Google Scholar 

  • Robertson, D. G., Reily, M. D., Sigler, R. E., Wells, D. F., Paterson, D. A., & Braden, T. K. (2000). Metabolomics: Evaluation of nuclear magnetic resonance (NMR) and pattern recognition technology for rapid in vivo screening of liver and kidney toxicants. Toxicological Sciences, 57, 326–337.

    Article  PubMed  CAS  Google Scholar 

  • Rozman, K. K., & Doull, J. (1998). General principles of toxicology. In J. Rose (Ed.), Environmental toxicology: Current developments (pp. 1–11). Amsterdam: Gordon and Breach Science Publishers.

    Google Scholar 

  • Schoonen, W. G., Kloks, C. P., Ploeman, J. P., Smit, M. J., Horback, G. J., Mellema, J. R., et al. (2007). Uniform procedure of (1)H NMR analysis of rat urine and toxicometabonomics. Part II: Comparison of NMR profiles for classification of hepatoxicity. Toxicological Sciences, 98, 286–297.

    Article  PubMed  CAS  Google Scholar 

  • Torgrip, R. J. O., Åring, M., Karlberg, B., & Jacobsson, S. P. (2003). Peak alignment using reduced set mapping. Journal of Chemometrics, 17, 573–582.

    Article  CAS  Google Scholar 

  • Uchida, K., Ogura, Y., Yamaga, N., & Yamada, K. (2002). α-Naphthylisothiocyanate (ANIT) induced cholestasis in rats. Yonago Acta Medica, 45, 59–68.

    CAS  Google Scholar 

  • Van den Berg, H. C., Hoefsloot, J. A., Westerhuis, J. A., Smilde, A. K., & Van der Werf, M. J. (2006). Centering, scaling, and transformations: Improving the biological information content of metabolomics data. BMC Genomics, 7, 142.

    Article  PubMed  Google Scholar 

  • Weljie, A. M., Newton, J., Mercier, P., Carlson, E., & Slupsky, C. M. (2006). Targeted profiling: Quantitative analysis of 1H NMR metabolomics data. Analytical Chemistry, 78, 4430–4442.

    Article  PubMed  CAS  Google Scholar 

  • Williams, R. E., Cottrell, L., Jacobsen, M., Bandara, L. R., Kelly, M. D., & Kennedy, S. (2003). 1H-Nuclear magnetic resonance pattern recognition studies with N-phenylanthranilic acid in the rat: Time- and dose-related metabolic effects. Biomarkers, 8, 472–490.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants to WSU from the Air Force Research Laboratory, Human Effectiveness Directorate, Applied Biotechnology Branch (AFRL/RHPB), ManTech Environmental Technology, Inc. (Contract No. ManTech/WBI-002), Alion Science and Technology (Contract No. SUB1174146RB), and Henry M. Jackson Foundation for Advancement of Military Medicine, Inc. (Contract No. 132633). The authors thank Mr. Mark Westrick for technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deirdre A. Mahle.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 15 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mahle, D.A., Anderson, P.E., DelRaso, N.J. et al. A generalized model for metabolomic analyses: application to dose and time dependent toxicity. Metabolomics 7, 206–216 (2011). https://doi.org/10.1007/s11306-010-0246-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11306-010-0246-3

Keywords

Navigation