Skip to main content
Log in

Quantification of Iron-Labeled Cells with Positive Contrast in Mouse Brains

  • Research Article
  • Published:
Molecular Imaging and Biology Aims and scope Submit manuscript

Abstract

Purpose

To quantify small amounts of iron-labeled cells in mouse brains with magnetic resonance imaging (MRI).

Procedures

Iron-labeled cells (from 500 to 7,500) were stereotaxically transplanted into the brain of living mice that were subsequently imaged with MRI at 4.7 T. We compared four quantitative methods: (1) T2 relaxometry, (2) T2* relaxometry, (3) the volume of the cloverleaf hypointense artifact generated on T2*-weighted images, and (4) the volume of the cloverleaf hyperintense artifact generated on positive contrast images.

Results

The methods based on relaxometry, whether T2 or T2*, did not correlate with the number of injected cells. By contrast, those based on measurement of cloverleaf artifact volume, whether using negative or positive enhancement, showed a significant linear relationship for the given range of cells (R [0.92–0.95], p < 0.05).

Conclusions

T2* artifact volume imaging (negative or positive) appears promising for the quantification of magnetically labeled cells following focal injection in the brain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Corot C, Robert P, Idee JM, Port M (2006) Recent advances in iron oxide nanocrystal technology for medical imaging. Adv Drug Deliv Rev 58(14):1471–1504

    Article  PubMed  CAS  Google Scholar 

  2. Cunningham CH, Arai T, Yang PC, McConnell MV, Pauly JM, Conolly SM (2005) Positive contrast magnetic resonance imaging of cells labeled with magnetic nanoparticles. Magn Reson Med 53(5):999–1005

    Article  PubMed  CAS  Google Scholar 

  3. Dahnke H, Liu W, Herzka D, Frank JA, Schaeffter T (2008) Susceptibility gradient mapping (SGM): a new postprocessing method for positive contrast generation applied to superparamagnetic iron oxide particle (SPIO)-labeled cells. Magn Reson Med 60(3):595–603

    Article  PubMed  Google Scholar 

  4. Dharmakumar R, Koktzoglou I, Li D (2006) Generating positive contrast from off-resonant spins with steady-state free precession magnetic resonance imaging: theory and proof-of-principle experiments. Phys Med Biol 51(17):4201–4215

    Article  PubMed  Google Scholar 

  5. Mani V, Briley-Saebo KC, Itskovich VV, Samber DD, Fayad ZA (2006) Gradient echo acquisition for superparamagnetic particles with positive contrast (GRASP): sequence characterization in membrane and glass superparamagnetic iron oxide phantoms at 1.5 T and 3 T. Magn Reson Med 55(1):126–135

    Article  PubMed  CAS  Google Scholar 

  6. Seppenwoolde JH, Viergever MA, Bakker CJ (2003) Passive tracking exploiting local signal conservation: the white marker phenomenon. Magn Reson Med 50(4):784–790

    Article  PubMed  Google Scholar 

  7. Stuber M, Gilson WD, Schar M, Kedziorek DA, Hofmann LV, Shah S, Vonken EJ, Bulte JW, Kraitchman DL (2007) Positive contrast visualization of iron oxide-labeled stem cells using inversion-recovery with ON-resonant water suppression (IRON). Magn Reson Med 58(5):1072–1077

    Article  PubMed  Google Scholar 

  8. Foltz WD, Cunningham CH, Mutsaers AJ, Conolly SM, Stewart DJ, Dick AJ (2006) Positive-contrast imaging in the rabbit hind-limb of transplanted cells bearing endocytosed superparamagnetic beads. J Cardiovasc Magn Reson 8(6):817–823

    Article  PubMed  Google Scholar 

  9. Gilad AA, Walczak P, McMahon MT, Na HB, Lee JH, An K, Hyeon T, van Zijl PC, Bulte JW (2008) MR tracking of transplanted cells with “positive contrast” using manganese oxide nanoparticles. Magn Reson Med 60(1):1–7

    Article  PubMed  CAS  Google Scholar 

  10. Korosoglou G, Weiss RG, Kedziorek DA, Walczak P, Gilson WD, Schar M, Sosnovik DE, Kraitchman DL, Boston RC, Bulte JW, Weissleder R, Stuber M (2008) Noninvasive detection of macrophage-rich atherosclerotic plaque in hyperlipidemic rabbits using “positive contrast” magnetic resonance imaging. J Am Coll Cardiol 52(6):483–491

    Article  PubMed  CAS  Google Scholar 

  11. Mani V, Adler E, Briley-Saebo KC, Bystrup A, Fuster V, Keller G, Fayad ZA (2008) Serial in vivo positive contrast MRI of iron oxide-labeled embryonic stem cell-derived cardiac precursor cells in a mouse model of myocardial infarction. Magn Reson Med 60(1):73–81

    Article  PubMed  Google Scholar 

  12. Suzuki Y, Cunningham CH, Noguchi K, Chen IY, Weissman IL, Yeung AC, Robbins RC, Yang PC (2008) In vivo serial evaluation of superparamagnetic iron-oxide labeled stem cells by off-resonance positive contrast. Magn Reson Med 60(6):1269–1275

    Article  PubMed  CAS  Google Scholar 

  13. Hoehn M, Kustermann E, Blunk J, Wiedermann D, Trapp T, Wecker S, Focking M, Arnold H, Hescheler J, Fleischmann BK, Schwindt W, Buhrle C (2002) Monitoring of implanted stem cell migration in vivo: a highly resolved in vivo magnetic resonance imaging investigation of experimental stroke in rat. Proc Natl Acad Sci USA 99(25):16267–16272

    Article  PubMed  CAS  Google Scholar 

  14. Brisset JC, Desestret V, Marcellino S, Devillard E, Chauveau F, Lagarde F, Nataf S, Nighoghossian N, Berthezene Y, Wiart M (2009) Quantitative effects of cell internalization of two types of ultrasmall superparamagnetic iron oxide nanoparticles at 4.7 T and 7 T. Eur Radiol 2:275–285

    Google Scholar 

  15. Politi LS, Bacigaluppi M, Brambilla E, Cadioli M, Falini A, Comi G, Scotti G, Martino G, Pluchino S (2007) Magnetic-resonance-based tracking and quantification of intravenously injected neural stem cell accumulation in the brains of mice with experimental multiple sclerosis. Stem Cells 25(10):2583–2592

    Article  PubMed  Google Scholar 

  16. Wilhelm C, Gazeau F (2008) Universal cell labelling with anionic magnetic nanoparticles. Biomaterials 29(22):3161–3174

    Article  PubMed  CAS  Google Scholar 

  17. Wilhelm C, Billotey C, Roger J, Pons JN, Bacri JC, Gazeau F (2003) Intracellular uptake of anionic superparamagnetic nanoparticles as a function of their surface coating. Biomaterials 24(6):1001–1011

    Article  PubMed  CAS  Google Scholar 

  18. Desestret V, Brisset JC, Moucharrafie S, Devillard E, Nataf S, Honnorat J, Nighoghossian N, Berthezene Y, Wiart M (2009) Early-stage investigations of ultrasmall superparamagnetic iron oxide-induced signal change after permanent middle cerebral artery occlusion in mice. Stroke 40(5):1834–1841

    Article  PubMed  Google Scholar 

  19. Bland JM, Altman DG (1999) Measuring agreement in method comparison studies. Stat Methods Med Res 8(2):135–160

    Article  PubMed  CAS  Google Scholar 

  20. Bowen CV, Zhang X, Saab G, Gareau PJ, Rutt BK (2002) Application of the static dephasing regime theory to superparamagnetic iron-oxide loaded cells. Magn Reson Med 48(1):52–61

    Article  PubMed  CAS  Google Scholar 

  21. Yablonskiy DA, Haacke EM (1994) Theory of NMR signal behavior in magnetically inhomogeneous tissues: the static dephasing regime. Magn Reson Med 32(6):749–763

    Article  PubMed  CAS  Google Scholar 

  22. Dahnke H, Schaeffter T (2005) Limits of detection of SPIO at 3.0 T using T2 relaxometry. Magn Reson Med 53(5):1202–1206

    Article  PubMed  CAS  Google Scholar 

  23. Kuhlpeter R, Dahnke H, Matuszewski L, Persigehl T, von Wallbrunn A, Allkemper T, Heindel WL, Schaeffter T, Bremer C (2007) R2 and R2* mapping for sensing cell-bound superparamagnetic nanoparticles: in vitro and murine in vivo testing. Radiology 245(2):449–457

    Article  PubMed  Google Scholar 

  24. Liu W, Frank JA (2009) Detection and quantification of magnetically labeled cells by cellular MRI. Eur J Radiol 70(2):258–264

    Article  PubMed  Google Scholar 

  25. Rad AM, Arbab AS, Iskander AS, Jiang Q, Soltanian-Zadeh H (2007) Quantification of superparamagnetic iron oxide (SPIO)-labeled cells using MRI. J Magn Reson Imaging 26(2):366–374

    Article  PubMed  Google Scholar 

  26. Seppenwoolde JH, Vincken KL, Bakker CJ (2007) White-marker imaging—separating magnetic susceptibility effects from partial volume effects. Magn Reson Med 58(3):605–609

    Article  PubMed  Google Scholar 

  27. Li L, Jiang Q, Ding G, Zhang L, Zhang ZG, Li Q, Panda S, Lu M, Ewing JR, Chopp M (2009) Effects of administration route on migration and distribution of neural progenitor cells transplanted into rats with focal cerebral ischemia, an MRI study. J Cereb Blood Flow Metab 3:653–662

    Google Scholar 

  28. Liu W, Dahnke H, Rahmer J, Jordan EK, Frank JA (2009) Ultrashort T2* relaxometry for quantitation of highly concentrated superparamagnetic iron oxide (SPIO) nanoparticle labeled cells. Magn Reson Med 61(4):761–766

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from the ANR TecSan (INFLAM). The authors thank Christine Ménager of CNRS UMR 7612 (Paris, France) for kindly providing the AMNP contrast agent and Loic Boussel of CNRS UMR 5220 for his help with statistics.

Conflict of Interest Disclosure

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marlene Wiart.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brisset, JC., Sigovan, M., Chauveau, F. et al. Quantification of Iron-Labeled Cells with Positive Contrast in Mouse Brains. Mol Imaging Biol 13, 672–678 (2011). https://doi.org/10.1007/s11307-010-0402-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11307-010-0402-1

Key words

Navigation