Skip to main content

Advertisement

Log in

Cellular Uptake and Intra-Organ Biodistribution of Functionalized Silica-Coated Gold Nanorods

  • Research Article
  • Published:
Molecular Imaging and Biology Aims and scope Submit manuscript

Abstract

Purpose

To develop a new nanobiosystem based on folate-functionalized silica-coated gold nanorods and to investigate its cellular uptake and intra-organ biodistribution in vitro and in vivo.

Procedures

Ellipsoidal silica-coated gold nanorods (GNRs@SIO2) were prepared by seeded growth method using silicon dioxide (SIO2) as the shell material. Rhodamine-labeled GNRs@SiO2-folic acid (FA) were obtained by reacting the amino group located on GNRs@SiO2-FA with rhodamine isothiocyanate. The characteristics of the prepared GNRs@SiO2-FA were studied using transmission electron microscopy (TEM) and UV spectra. The 3-[4, 5-dimethylthiazol-2-yl]-2,5 diphenyltetrazolium bromide (MTT) colorimetric method was used to assess the biocompatibility of GNRs@SiO2-FA, and their uptake into cells was observed using TEM. In vivo experiments of cellular uptake and study of the intra-organ biodistribution of GNRs@SiO2-FA were detected using intrinsic two-photon luminescence.

Results

Analysis of UV spectra confirmed the successfu1 preparation of GNRs@SiO2-FA. Results of the MTT assay demonstrated that surface modification of GNRs@SiO2-FA resulted in excellent biocompatibility. TEM examination revealed that GNRs@SiO2-FA entered the cells via endocytosis, which could connect to cancer cells with high folic acid expression. We found that GNRs exhibit bright luminescence and could be visualized in vivo by direct imaging of these particles within the tissue. Additionally, GNRs@SiO2-FA could specifically bind to tumor cells. GNRs@SiO2-FA entered tumor cells within 24 h and had a heterogeneous distribution with higher accumulation at the tumor cytoplasm.

Conclusion

GNRs@SiO2-FA can bind to cells and were found to be internalized by targeted folate receptor-expressing cells via a ligand-receptor-mediated endocytosis pathway, which is very useful in diagnosing diseases as well as in treating neoplasm with I-125 particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Riehemann K, Schneider SW, Luger TA et al (2009) Nanomedicine—challenge and perspectives [J]. Angew Chem Int Ed Engl 48:872–897

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Kamaly N, Xiao Z, Valencia PM, Radovic-Moreno AF et al (2012) Targeted polymeric therapeutic nanoparticles: design, development and clinical translation. Chem Soc Rev 41:2971–3010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Jokerst JV, Thangaraj M, Kempen PJ et al (2012) Photoacoustic imaging of mesenchymal stem cells in living mice via silica-coated gold nanorods. ACS Nano 6:5920–5930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ju E, Li Z, Liu Z, Ren J, Qu X (2014) Near-infrared light-triggered drug-delivery vehicle for mitochondria-targeted chemo-photothermal therapy. ACS Appl Mater Interfaces 6:4364–4370

    Article  CAS  PubMed  Google Scholar 

  5. Wang Y, Chen L, Liu P (2012) Biocompatible triplex Ag@SiO2@mTiO2 core–shell nanoparticles for simultaneous fluorescence-SERS bimodal imaging and drug delivery. Chemistry 18:5935–5943

    Article  CAS  PubMed  Google Scholar 

  6. Tong L, Zhao TB, Huff MN et al (2007) Cheng. Hyperthermic effects of gold nanorods on tumor cells. Adv Mater 19:3136–3141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Wu Q, Chen L, Huang L et al (2015) Quantum dots decorated gold nanorod as fluorescent-plasmonic dual-modal contrasts agent for cancer imaging. Biosens Bioelectron 74:16–23

    Article  CAS  PubMed  Google Scholar 

  8. Song J, Pu L, Zhou J et al (2013) Biodegradable theranostic plasmonic vesicles of amphiphilic gold nanorods. ACS Nano 7:9947–9960

    Article  CAS  PubMed  Google Scholar 

  9. Wan J, Wang JH, Liu T et al (2015) Surface chemistry but not aspect ratio mediates the biological toxicity of gold nanorods in vitro and in vivo. Sci Rep 5:11398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Yin F, Yang C, Wang Q et al (2015) A light-driven therapy of pancreatic adenocarcinoma using gold nanorods-based nanocarriers for co-delivery of doxorubicin and siRNA. Theranostics 5:818–833

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Lee SE, Sasaki DY, Perroud TD et al (2009) Biologically functional cationic phospholipid-gold nanoplasmonic carriers of RNA. J Am Chem Soc 131:14066–14074

    Article  CAS  PubMed  Google Scholar 

  12. Giljohann DA, Seferos DS, Daniel WL et al (2010) Gold nanoparticles for biology and medicine. Angew Chem Int Ed Engl 49:3280–3294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Song EQ, Hu J, Wen CY, Tian ZQ et al (2011) Fluorescent-magnetic-biotargeting multifunctional nanobioprobes for detecting and isolating multiple types of tumor cells. ACS Nano 5:761–770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Conde J, Doria G, Baptista R (2012) Noble metal nanoparticles applications in cancer. J Drug Deliv. doi:10.1155/2012/751075

    PubMed  Google Scholar 

  15. Mackey MA, Ali MR, Austin LA (2014) The most effective gold nanorod size for plasmonic photothermal therapy: theory and in vitro experiments. J Phys Chem B 118:1319–1326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kang B, Mackey MA, El-Sayed MA (2010) Nuclear targeting of gold nanoparticles in cancer cells induces DNA damage, causing cytokinesis arrest and apoptosis. J Am Chem Soc 132:1517–1519

    Article  CAS  PubMed  Google Scholar 

  17. Pan Y, Leifert A, Ruau D et al (2009) Gold nanoparticles of diameter 1.4 nm trigger necrosis by oxidative stress and mitochondrial damage. Small 5:2067–2076

    Article  CAS  PubMed  Google Scholar 

  18. Takahashi H, Niidome Y, Niidome T et al (2006) Modification of gold nanorods using phosphatidylcholine to reduce. Langmuir 22:2–5

    Article  CAS  PubMed  Google Scholar 

  19. Niidome T, Yamagata M, Okamoto Y et al (2006) PEG-modified gold nanorods with a stealth character for in vivo applications. J Control Release 114:343–347

    Article  CAS  PubMed  Google Scholar 

  20. Vigderman L, Manna P, Zubarev ER (2012) Quantitative replacement of cetyl trimethylammonium bromide by cationic thiol ligands on the surface of gold nanorods and their extremely large uptake by cancer cells. Angew Chem Int Ed Engl 51:636–641

    Article  CAS  PubMed  Google Scholar 

  21. Qiu Y, Wang M, Xu LG, Bai R et al (2010) Surface chemistry and aspect ratio mediated cellular uptake of Au nanorods. Biomaterials 31:7606–7619

    Article  CAS  PubMed  Google Scholar 

  22. Xie CJ, Vin DG, Li J et al (2009) Preparation of a novel amino functionalized fluorescein-doped silica nanoparticle for pH probe. Nano Biomed Eng 1:39–47

    Article  CAS  Google Scholar 

  23. Zhang ZJ, Wang LM, Wang J et al (2012) Mesoporous silica-coated gold nanorods as a light-mediated multifunctional theranostic platform for cancer treatment. Adv Mater 24:1418–1423

    Article  CAS  PubMed  Google Scholar 

  24. Shen S, Tang HY, Zhang XT et al (2013) Targeting mesoporous silica-encapsulated gold nanorods for chemo-photothermal therapy with near-infrared radiation. Biomaterials 34:3150–3158

    Article  CAS  PubMed  Google Scholar 

  25. Liu Y, Xu M, Chen Q et al (2015) Gold nanorods/mesoporous silica-based nanocomposite astheranostic agents for targeting near-infrared imaging and photothermal therapy induced with laser. Intl J Nanomed 10:4747–4761

    Article  CAS  Google Scholar 

  26. Wang Z, Zong S, Yang J et al (2011) Dual-mode probe based on mesoporous silica coated gold nanorods for targeting cancer cells. Biosens Bioelectron 26:2883–2889

    Article  CAS  PubMed  Google Scholar 

  27. Li Z, Huang H, Tang S et al (2015) Small gold nanorods laden macrophages for enhanced tumor coverage in photothermal therapy. Biomaterials 74:144–154

    Article  PubMed  Google Scholar 

  28. Conde J, Doria G, Baptista R (2012) Noble metal nanoparticles applications in cancer. J Drug Deliv doi:10.1155/2012/751075.

  29. Xu B, Ju Y, Cui Y et al (2014) tLyP-1-conjugated Au-nanorod@SiO2 core-shell nanoparticles for tumor targeted drug delivery and photothermal therapy. Langmuir 30:7789–7797

    Article  CAS  PubMed  Google Scholar 

  30. Turcheniuk K, Turcheniuk V, Hage CH et al (2015) Highly effective photodynamic inactivation of E. coli using gold nanorods/SiO2 core-shell nanostructures with embedded verteporfin. Chem Commun 51:16365–16368

    Article  CAS  Google Scholar 

  31. Das M, Yi DK, An SS (2015) Analyses of protein corona on bare and silica-coated gold nanorods against four mammalian cells. Int J Nanomed 10:1521–1545

    CAS  Google Scholar 

  32. Liu Y, Xu M, Chen Q et al (2015) Gold nanorods/mesoporous silica-based nanocomposite as theranostic agents for targeting near-infrared imaging and photothermal therapy induced with laser. Int J Nanomedicine 10:4747–4761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Pastoriza-Santos I, Perez-Juste J, Liz-Marzan LM (2006) Silica-coating and hydrophobation of CTAB-stabilized gold nanorods. Chem Mater 8:2465–2467

    Article  Google Scholar 

  34. Huang P, Bao L, Zhang C et al (2011) Folic acid-conjugated silica-modified gold nanorods for X-ray/CT imaging-guided dual-mode radiation and photo-thermal therapy. Biomaterials 32:9796–9809

    Article  CAS  PubMed  Google Scholar 

  35. Zhou F, Wu S, Yuan Y et al (2012) Mitochondria-targeting photoacoustic therapy using single-walled carbon nanotubes. Small 8:1543–1550

    Article  CAS  PubMed  Google Scholar 

  36. Zeng Q, Zhang Y, Ji W et al (2014) Inhibitation of cellular toxicity of gold nanoparticles by surface encapsulation of silica shell for hepatocarcinoma cell application. ACS Appl Mater Interfaces 6:19327–19335

    Article  CAS  PubMed  Google Scholar 

  37. Wang J, Bai R, Yang R et al (2015) Size and surface chemistry-dependent pharmacokinetics and tumor accumulation of engineered gold nanoparticles after intravenous administration. Metallomics 7:516–524

    Article  CAS  PubMed  Google Scholar 

  38. Hainfeld JF, Slatkin DN, Smilowitz HM (2004) The use of gold nanoparticles to enhance radiotherapy in mice. Phys Med Biol 49:N309–N315

    Article  CAS  PubMed  Google Scholar 

  39. Maeda H, Fang J, Inutsuka T, Kitamoto Y (2003) Vascular permeability enhancement in solid tumor: various factors, mechanisms involved and its implications. Int Immunopharmacol 3:319–328

    Article  CAS  PubMed  Google Scholar 

  40. Zhong J, Yang S, Zheng X et al (2013) In vivo photoacoustic therapy with cancer-targeted indocyanine green-containing nanoparticles. Nanomedicine (Lond) 8:903–919

    Article  CAS  Google Scholar 

  41. Tong L, He W, Zhang YS et al (2009) Visualizing systemic clearance and cellular level biodistribution of gold nanorods by intrinsic two-photon luminescence. Langmuir 25:12454–12459

    Article  CAS  PubMed  Google Scholar 

  42. Bickford L, Sun J, Fu K et al (2008) Enhanced multi-spectral imaging of live breast cancer cells using immunotargeted gold nanoshells and two-photon excitation microscopy. Nanotechnol 19:315102

    Article  Google Scholar 

  43. Park J, Estrada A, Schwartz JA et al (2010) Intra-organ biodistribution of gold nanoparticles using intrinsic two-photon-induced photoluminescence. Lasers Surg Med 42:630–639

    Article  PubMed  Google Scholar 

  44. Wang HF, Huff TB, Zweifel DA et al (2005) In vitro and in vivo two-photon luminescence imaging of single gold nanorods. Proc Natl Acad Sci 102:15752–15756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge Dr. B. Gao for the insightful discussions and access to the measurement facility and Dr. W. H. Xiao for the helpful discussion. The authors also acknowledge the University of Science and Technology of China and the National Science Foundation grant 81071240 for the financial assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Gao.

Ethics declarations

Conflicts of Interest

The authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

Animal studies were carried out under the supervision of a veterinarian according to the Guidelines of for the Use of Laboratory Animals of the Ministry of Public Health of China. All animals were provided by the Laboratory Animal Center of Anhui Medical University, and all protocols were approved by the Animal Use and Care Committee and Medical Ethics Committee of Anhui Medical University.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, B., Xu, J., He, kw. et al. Cellular Uptake and Intra-Organ Biodistribution of Functionalized Silica-Coated Gold Nanorods. Mol Imaging Biol 18, 667–676 (2016). https://doi.org/10.1007/s11307-016-0938-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11307-016-0938-9

Key words

Navigation