Skip to main content

Advertisement

Log in

Optical Surgical Navigation for Precision in Tumor Resections

  • Special Topic
  • Published:
Molecular Imaging and Biology Aims and scope Submit manuscript

Abstract

Optical imaging methods have significant potential as effective intraoperative tools to visualize tissues, cells, and biochemical events aimed at objective assessment of the tumor margin and guiding the surgeon to adequately resect the tumor while sparing critical tissues. The wide variety of approaches to guide resection, the range of parameters that they detect, and the interdisciplinary nature involving biology, chemistry, engineering, and medicine suggested that there was a need for an organization that could review, discuss, refine, and help prioritize methods to optimize patient care and pharmaceutical and instrument development. To address these issues, the World Molecular Imaging Society created the Optical Surgical Navigation (OSN) interest group to bring together scientists, engineers, and surgeons to develop the field to benefit patients. Here, we provide an overview of approaches currently under clinical investigation for optical surgical navigation and offer our perspective on upcoming strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hinni ML, Ferlito A, Brandwein-Gensler MS et al (2013) Surgical margins in head and neck cancer: a contemporary review. Head Neck 35:1362–1370

    Article  PubMed  Google Scholar 

  2. Woolgar JA, Triantafyllou A (2005) A histopathological appraisal of surgical margins in oral and oropharyngeal cancer resection specimens. Oral Oncol 41:1034–1043

    Article  PubMed  Google Scholar 

  3. Stummer W, Novotny A, Stepp H et al (2000) Fluorescence-guided resection of glioblastoma multiforme by using 5-aminolevulinic acid-induced porphyrins: a prospective study in 52 consecutive patients. J Neurosurg 93:1003–1013

    Article  CAS  PubMed  Google Scholar 

  4. Stummer W, Pichlmeier U, Meinel T et al (2006) Fluorescence-guided surgery with 5-aminolevulinic acid for resection of malignant glioma: a randomised controlled multicentre phase III trial. Lancet Oncol 7:392–401

    Article  CAS  PubMed  Google Scholar 

  5. Garland M, Yim JJ, Bogyo M (2016) A bright future for precision medicine: advances in fluorescent chemical probe design and their clinical application. Cell Chem Biol 23:122–136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Rosenthal EL, Warram JM, de Boer E et al (2016) Successful translation of fluorescence navigation during oncologic surgery: a consensus report. J Nucl Med 57:144–150

    Article  PubMed  Google Scholar 

  7. Tummers QR, Verbeek FP, Schaafsma BE et al (2014) Real-time intraoperative detection of breast cancer using near-infrared fluorescence imaging and methylene blue. Eur J Surg Oncol 40:850–858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Schaafsma BE, Mieog JSD, Hutteman M et al (2011) The clinical use of indocyanine green as a near-infrared fluorescent contrast agent for image-guided oncologic surgery. J Surg Oncol 104:323–332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ishizawa T, Fukushima N, Shibahara J et al (2009) Real-time identification of liver cancers by using indocyanine green fluorescent imaging. Cancer 115:2491–2504

    Article  PubMed  Google Scholar 

  10. Satou S, Ishizawa T, Masuda K et al (2013) Indocyanine green fluorescent imaging for detecting extrahepatic metastasis of hepatocellular carcinoma. J Gastroenterol 48:1136–1143

    Article  CAS  PubMed  Google Scholar 

  11. van der Vorst JR, Schaafsma BE, Hutteman M et al (2013) Near-infrared fluorescence-guided resection of colorectal liver metastases. Cancer 119:3411–3418

    Article  PubMed  PubMed Central  Google Scholar 

  12. Keating J, Tchou J, Okusanya O et al (2016) Identification of breast cancer margins using intraoperative near-infrared imaging. J Surg Oncol 113:508–514

    Article  CAS  PubMed  Google Scholar 

  13. Holt D, Okusanya O, Judy R, et al. (2014) Intraoperative near-infrared imaging can distinguish cancer from normal tissue but not inflammation. Plos One 9

  14. Jiang JX, Keating JJ, Jesus EM et al (2015) Optimization of the enhanced permeability and retention effect for near-infrared imaging of solid tumors with indocyanine green. Am J Nucl Med Mol Imaging 5:390–400

    CAS  PubMed  PubMed Central  Google Scholar 

  15. van Dam GM, Themelis G, Crane LM et al (2011) Intraoperative tumor-specific fluorescence imaging in ovarian cancer by folate receptor-alpha targeting: first in-human results. Nat Med 17:1315–1319

    Article  PubMed  Google Scholar 

  16. De Jesus E, Keating JJ, Kularatne SA et al (2015) Comparison of folate receptor targeted optical contrast agents for intraoperative molecular imaging. Int J Mol Imaging 2015:469047

    Article  PubMed  PubMed Central  Google Scholar 

  17. Hoogstins CES, Tummers QRJG, Gaarenstroom KN et al (2016) A novel tumor-specific agent for intraoperative near-infrared fluorescence imaging: a translational study in healthy volunteers and patients with ovarian cancer. Clin Cancer Res 22:2929–2938

    Article  CAS  PubMed  Google Scholar 

  18. Chen H, Niu G, Wu H, Chen X (2016) Clinical application of radiolabeled RGD peptides for PET imaging of integrin alphavbeta3. Theranostics 6:78–92

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Mansi R, Fleischmann A, Macke HR, Reubi JC (2013) Targeting GRPR in urological cancers—from basic research to clinical application. Nat Rev Urol 10:235–244

    Article  CAS  PubMed  Google Scholar 

  20. Mojtahedi A, Thamake S, Tworowska I et al (2014) The value of 68Ga-DOTATATE PET/CT in diagnosis and management of neuroendocrine tumors compared to current FDA approved imaging modalities: a review of literature. Am J Nucl Med Mol Imaging 4:426–434

    PubMed  PubMed Central  Google Scholar 

  21. Patil C, Walker D, Butte P et al (2015) Phase 1 dose escalation and expansion safety study opf blz-100 for fluorescence guided resection of glioma in adults [abstract]. Neuro-Oncology 17:v14

    Article  PubMed Central  Google Scholar 

  22. Burggraaf J, Kamerling IMC, Gordon PB et al (2015) Detection of colorectal polyps in humans using an intravenously administered fluorescent peptide targeted against c-Met. Nat Med 21:955–961

    Article  CAS  PubMed  Google Scholar 

  23. Sturm MB, Joshi BP, Lu S et al (2013) Targeted imaging of esophageal neoplasia with a fluorescently labeled peptide: first-in-human results. Sci Transl Med 5:184ra161

    Article  Google Scholar 

  24. O’Neil BH, Allen R, Spigel DR et al (2007) High incidence of cetuximab-related infusion reactions in Tennessee and North Carolina and the association with atopic history. J Clin Oncol 25:3644–3648

    Article  PubMed  Google Scholar 

  25. Kim GP, Grothey A (2008) Targeting colorectal cancer with human anti-EGFR monoclonocal antibodies: focus on panitumumab. Biologics 2:223–228

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Day KE, Sweeny L, Kulbersh B et al (2013) Preclinical comparison of near-infrared-labeled cetuximab and panitumumab for optical imaging of head and neck squamous cell carcinoma. Mol Imaging Biol 15:722–729

    Article  PubMed  PubMed Central  Google Scholar 

  27. Lamberts LE, Koch M, de Jong JS, et al. (2016) Tumor-specific uptake of fluorescent bevacizumab-IRDye800CW microdosing in patients with primary breast cancer: a phase I feasibility study. Clin Cancer Res

  28. Sexton K, Tichauer K, Samkoe KS et al (2013) Fluorescent affibody peptide penetration in glioma margin is superior to full antibody. PLoS One 8:e60390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Olson OC, Joyce JA (2015) Cysteine cathepsin proteases: regulators of cancer progression and therapeutic response. Nat Rev Cancer 15:712–729

    Article  CAS  PubMed  Google Scholar 

  30. Whitley MJ, Cardona DM, Lazarides AL et al (2016) A mouse-human phase 1 co-clinical trial of a protease-activated fluorescent probe for imaging cancer. Sci Transl Med 8:320ra324

    Article  Google Scholar 

  31. Zinn KR, Korb M, Samuel S et al (2015) IND-directed safety and biodistribution study of intravenously injected cetuximab-IRDye800 in cynomolgus macaques. Mol Imaging Biol 17:49–57

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Phillips E, Penate-Medina O, Zanzonico PB et al (2014) Clinical translation of an ultrasmall inorganic optical-PET imaging nanoparticle probe. Sci Transl Med:6:260ra149

  33. Blanco E, Shen H, Ferrari M (2015) Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat Biotechnol 33:941–951

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Mohs AM, Mancini MC, Singhal S et al (2010) Hand-held spectroscopic device for in vivo and intraoperative tumor detection: contrast enhancement, detection sensitivity, and tissue penetration. Anal Chem 82:9058–9065

    Article  CAS  PubMed  Google Scholar 

  35. Rosenthal EL, Warram JM, de Boer E et al (2015) Safety and tumor specificity of cetuximab-IRDye800 for surgical navigation in head and neck cancer. Clin Cancer Res 21:3658–3666

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. DSouza AV, Lin H, Henderson ER et al (2016) Review of fluorescence guided surgery systems: identification of key performance capabilities beyond indocyanine green imaging. J Biomed Opt 21:80901

    Article  PubMed  Google Scholar 

  37. Troyan SL, Kianzad V, Gibbs-Strauss SL et al (2009) The FLARE((TM)) intraoperative near-infrared fluorescence imaging system: a first-in-human clinical trial in breast cancer sentinel lymph node mapping. Ann Surg Oncol 16:2943–2952

    Article  PubMed  PubMed Central  Google Scholar 

  38. Mieog JS, Troyan SL, Hutteman M et al (2011) Toward optimization of imaging system and lymphatic tracer for near-infrared fluorescent sentinel lymph node mapping in breast cancer. Ann Surg Oncol 18:2483–2491

    Article  PubMed  PubMed Central  Google Scholar 

  39. Eljamel MS, Goodman C, Moseley H (2008) ALA and photofrin (R) fluorescence-guided resection and repetitive PDT in glioblastoma multiforme: a single Centre phase III randomised controlled trial. Laser Med Sci 23:361–367

    Article  Google Scholar 

  40. Penson DF, McLerran D, Feng Z et al (2008) 5-year urinary and sexual outcomes after radical prostatectomy: results from the prostate cancer outcomes study (reprinted from The Journal of Urology, vol 173, pg 1701-1705, 2005). J Urol 179:S40–S44

    Article  PubMed  Google Scholar 

  41. Gibbs-Strauss SL, Nasr KA, Fish KM et al (2011) Nerve-highlighting fluorescent contrast agents for image-guided surgery. Mol Imaging 10:91–101

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Whitney MA, Crisp JL, Nguyen LT et al (2011) Fluorescent peptides highlight peripheral nerves during surgery in mice. Nat Biotechnol 29:352–356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Azzouzi AR, Vincendeau S, Barret E, et al. (2016) Padeliporfin vascular-targeted photodynamic therapy versus active surveillance in men with low-risk prostate cancer (CLIN1001 PCM301): an open-label, phase 3, randomised controlled trial. Lancet Oncol

  44. Antaris AL, Chen H, Cheng K et al (2016) A small-molecule dye for NIR-II imaging. Nat Mater 15:235–242

    Article  CAS  PubMed  Google Scholar 

  45. Wang TD, Mandella MJ, Contag CH, Kino GS (2003) Dual-axis confocal microscope for high-resolution in vivo imaging. Opt Lett 28:414–416

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author Contribution

S.H. and N.T. wrote the manuscript. M.F.T., J.P.B., and E.L.R. wrote and revised the manuscript. All authors reviewed and approved the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eben L. Rosenthal.

Ethics declarations

Conflict of Interests

S.H., N.T., M.F.T., and E.L.R. declare no conflicts of interests. J.P.B. has an interest in Akrotome Imaging Inc., a company developing probes in this space, and consults for Vergent Biosciences and LightPoint Medical Ltd.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Harmsen, S., Teraphongphom, N., Tweedle, M.F. et al. Optical Surgical Navigation for Precision in Tumor Resections. Mol Imaging Biol 19, 357–362 (2017). https://doi.org/10.1007/s11307-017-1054-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11307-017-1054-1

Key words

Navigation