Skip to main content

Advertisement

Log in

Magnetic Particle Imaging-Guided Hyperthermia for Precise Treatment of Cancer: Review, Challenges, and Prospects

  • Review Article
  • Published:
Molecular Imaging and Biology Aims and scope Submit manuscript

A Correction to this article was published on 10 November 2023

This article has been updated

Abstract

Magnetic particle imaging (MPI) is a novel quantitative imaging technique using the nonlinear magnetization behavior of magnetic nanoparticles (MNPs) to determine their local concentration. Magnetic fluid hyperthermia (MFH) is a promising non-invasive therapy using the heating effects of MNPs. MPI-MFH is expected to enable real-time MPI guidance, localized MFH, and non-invasive temperature monitoring, which shows great potential for precise treatment of cancer. In this review, we introduce the fundamentals of MPI and MFH and their applications in the treatment of cancer. Also, we discuss the challenges and prospects of MPI-MFH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Change history

References

  1. Chen X, Wong STC (2014) Cancer theranostics: an introduction. In: Chen X, Wong STC (eds) Cancer Theranostics. Academic, pp 3–4

    Google Scholar 

  2. Lee YT, Tan YJ, Oon CE (2018) Molecular targeted therapy: treating cancer with specificity. Eur J Pharmacol 834:188–196

    CAS  PubMed  Google Scholar 

  3. Matsen CB, Neumayer LA (2013) Breast cancer: a review for the general surgeon. JAMA Surg 148:971–979

    PubMed  Google Scholar 

  4. Blumenschein GR, Distefano A, Caderao J et al (1997) Multimodality therapy for locally advanced and limited stage IV breast cancer: the impact of effective non-cross-resistant late-consolidation chemotherapy. Clin Cancer Res 3:2633–2637

    CAS  PubMed  Google Scholar 

  5. Park W, Chawla A, O’Reilly EM (2021) Pancreatic cancer: a review. JAMA - J Am Med Assoc 326:851–862

    CAS  Google Scholar 

  6. Hughes JR, Parsons JL (2020) Flash radiotherapy: current knowledge and future insights using proton-beam therapy. Int J Mol Sci 21:1–14

    Google Scholar 

  7. Baskar R, Lee KA, Yeo R, Yeoh KW (2012) Cancer and radiation therapy: current advances and future directions. Int J Med Sci 9:193–199

    PubMed  PubMed Central  Google Scholar 

  8. Mohan R, Bortfeld T (2011) Proton therapy: clinical gains through current and future treatment programs. Front Radiat Ther Oncol 43:440–464

    PubMed  Google Scholar 

  9. Dinesh Mayani D (2011) Proton therapy for cancer treatment. J Oncol Pharm Pract 17:186–190

    PubMed  Google Scholar 

  10. Mohan R, Grosshans D (2017) Proton therapy – present and future. Adv Drug Deliv Rev 109:26–44. https://doi.org/10.1016/j.addr.2016.11.006

    Article  PubMed  Google Scholar 

  11. Nygren P (2001) What is cancer chemotherapy? Acta Oncol (Madr) 40:166–174

    CAS  Google Scholar 

  12. Chari RVJ (2008) Targeted cancer therapy: conferring specificity to cytotoxic drugs. Acc Chem Res 41:98–107

    CAS  PubMed  Google Scholar 

  13. Galluzzi L, Humeau J, Buqué A et al (2020) Immunostimulation with chemotherapy in the era of immune checkpoint inhibitors. Nat Rev Clin Oncol 17:725–741

    PubMed  Google Scholar 

  14. Farzin L, Saber R, Sadjadi S et al (2022) Nanomaterials-based hyperthermia: a literature review from concept to applications in chemistry and biomedicine. J Therm Biol 104:103201

    CAS  PubMed  Google Scholar 

  15. Harmon BV, Takano YS, Winterford CM, Gobe GC (1991) The role of apoptosis in the response of cells and tumours to mild hyperthermia. Int J Radiat Biol 59:489–501

    CAS  PubMed  Google Scholar 

  16. van Oorschot B, Granata G, Di Franco S et al (2016) Targeting DNA double strand break repair with hyperthermia and DNA-PKcs inhibition to enhance the effect of radiation treatment. Oncotarget 7:65504–65513

  17. Schildkopf P, Ott OJ, Frey B et al (2010) Biological rationales and clinical applications of temperature controlled hyperthermia - implications for multimodal cancer treatments. Curr Med Chem 17:3045–3057

    CAS  PubMed  Google Scholar 

  18. Lee S, Son B, Park G et al (2018) Immunogenic effect of hyperthermia on enhancing radiotherapeutic efficacy. Int J Mol Sci 19:2795

  19. Schneider CS, Woodworth GF, Vujaskovic Z, Mishra MV (2020) Radiosensitization of high-grade gliomas through induced hyperthermia: review of clinical experience and the potential role of MR-guided focused ultrasound. Radiother Oncol 142:43–51

    CAS  PubMed  Google Scholar 

  20. Roussakow S (2017) Neo-adjuvant chemotherapy alone or with regional hyperthermia for soft-tissue sarcoma. Lancet Oncol 18:e629

    PubMed  Google Scholar 

  21. Deger S, Böhmer D, Rüter A et al (2003) Interstitial hyperthermia using self-regulating thermoseeds combined with conformal radiation therapy. Eur Urol Suppl 2:136

    Google Scholar 

  22. Brero F, Calzolari P, Albino M et al (2023) Proton therapy, magnetic nanoparticles and hyperthermia as combined treatment for pancreatic BxPC3 tumor cells. Nanomaterials 13:1–17

    Google Scholar 

  23. Singh A, Jain S, Sahoo SK (2020) Magnetic nanoparticles for amalgamation of magnetic hyperthermia and chemotherapy: an approach towards enhanced attenuation of tumor. Mater Sci Eng C 110:110695

    CAS  Google Scholar 

  24. Nagata Y, Hiraoka M, Nishimura Y et al (1997) Clinical results of radiofrequency hyperthermia for malignant liver tumors. Int J Radiat Oncol Biol Phys 38:359–365

    CAS  PubMed  Google Scholar 

  25. van Valenberg H, Colombo R, Witjes F (2016) Intravesical radiofrequency-induced hyperthermia combined with chemotherapy for non-muscle-invasive bladder cancer. Int J Hyperth 32:351–362

    Google Scholar 

  26. Hildebrandt B, Wust P, Gellermann J et al (2004) Treatment of locally recurrent rectal cancer with special focus on regional pelvic hyperthermia. Onkologie 27:506–511

    CAS  PubMed  Google Scholar 

  27. Franco JVA, Garegnani L, Liquitay CME et al (2022) Transurethral microwave thermotherapy for benign prostatic hyperplasia: an updated Cochrane review. World J Mens Health 40:127–138

    PubMed  Google Scholar 

  28. Moradpoor R, Aledavood SA, Rajabi O et al (2017) Enhancement of cisplatin efficacy by gold nanoparticles or microwave hyperthermia? An in vitro study on a melanoma cell line. Int J Cancer Manag 10:1–8

    Google Scholar 

  29. Wu F (2014) High intensity focused ultrasound: a noninvasive therapy for locally advanced pancreatic cancer. WORLD J Gastroenterol 20:16480–16488

    PubMed  PubMed Central  Google Scholar 

  30. Kim Y-S (2017) Clinical application of high-intensity focused ultrasound ablation for uterine fibroids. Biomed Eng Lett 7:99–105

    PubMed  PubMed Central  Google Scholar 

  31. Lang BH, Wu ALH (2018) The efficacy and safety of high-intensity focused ultrasound ablation of benign thyroid nodules. Ultrasonography 37:89–97

    PubMed  Google Scholar 

  32. Zhou Z, Yan Y, Hu K et al (2017) Autophagy inhibition enabled efficient photothermal therapy at a mild temperature. Biomaterials 141:116–124

    CAS  PubMed  Google Scholar 

  33. Monitoring RT, Ptt IG (2007) Accurate and real-time temperature monitoring during MR imaging guided PTT. Nano Lett 20:2522–2529

    Google Scholar 

  34. Yu Y, Tang D, Liu C et al (2022) Biodegradable polymer with effective near-infrared-II absorption as a photothermal agent for deep tumor therapy. Adv Mater 34:2105976

    CAS  Google Scholar 

  35. Deng K, Li C, Huang S et al (2017) Recent progress in near infrared light triggered photodynamic therapy. Small 13:170229

    Google Scholar 

  36. Yue C, Zhang C, Alfranca G et al (2016) Near-infrared light triggered ros-activated theranostic platform based on ce6-cpt-ucnps for simultaneous fluorescence imaging and chemo-photodynamic combined therapy. Theranostics 6:456–469

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Buchholz TA, Ali S, Hunt KK (2020) Hyperthermia plus re-irradiation in the management of unresectable locoregional recurrence of breast cancer in Previously irradiated sites reply. J Clin Oncol 38:3576–3577

    Google Scholar 

  38. Lei Z, Wang Y, Wang J et al (2020) Evaluation of cytoreductive surgery with or without hyperthermic intraperitoneal chemotherapy for stage III epithelial ovarian cancer. JAMA Netw open 3:e2013940

    PubMed  PubMed Central  Google Scholar 

  39. Yu MK, Kim D, Lee IH et al (2011) Image-guided prostate cancer therapy using aptamer-functionalized thermally cross-linked superparamagnetic iron oxide nanoparticles. Small 7:2241–2249

    CAS  PubMed  Google Scholar 

  40. Xu H, Zong H, Ma C et al (2017) Evaluation of nano-magnetic fluid on malignant glioma cells. Oncol Lett 13:677–680

    CAS  PubMed  Google Scholar 

  41. Gleich B, Weizenecker J (2005) Tomographic imaging using the nonlinear response of magnetic particles. Nature 435:1214–1217

    CAS  PubMed  Google Scholar 

  42. Sedlacik J, Frölich A, Spallek J et al (2016) Magnetic particle imaging for high temporal resolution assessment of aneurysm hemodynamics. PLoS One 11:1–12

    Google Scholar 

  43. Weizenecker J, Gleich B, Rahmer J et al (2009) Three-dimensional real-time in vivo magnetic particle imaging. Phys Med Biol 54:L1–L10

    CAS  PubMed  Google Scholar 

  44. Them K, Salamon J, Szwargulski P et al (2016) Increasing the sensitivity for stem cell monitoring in system-function based magnetic particle imaging. Phys Med Biol 61:3279–3290

    CAS  PubMed  Google Scholar 

  45. Zheng B, Von See MP, Yu E et al (2016) Quantitative magnetic particle imaging monitors the transplantation, biodistribution, and clearance of stem cells in vivo. Theranostics 6:291–301

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Yu EY, Bishop M, Zheng B et al (2017) Magnetic particle imaging: a novel in vivo imaging platform for cancer detection. NANO Lett 17:1648–1654

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Ludewig P, Gdaniec N, Sedlacik J et al (2017) Magnetic particle imaging for real-time perfusion imaging in acute stroke. ACS Nano 11:10480–10488

    CAS  PubMed  Google Scholar 

  48. Knopp T, Gdaniec N, Möddel M (2017) Magnetic particle imaging: from proof of principle to preclinical applications. Phys Med Biol 62:R124–R178

  49. Pablico-Lansigan MH, Situ SF, Samia ACS (2013) Magnetic particle imaging: advancements and perspectives for real-time in vivo monitoring and image-guided therapy. Nanoscale 5:4040–4055

    CAS  PubMed  Google Scholar 

  50. Healy S, Bakuzis AF, Goodwill PW et al (2022) Clinical magnetic hyperthermia requires integrated magnetic particle imaging. Wiley Interdiscip Rev Nanomed Nanobiotechnol 14:e1779

    PubMed  PubMed Central  Google Scholar 

  51. Ludewig P, Graeser M, Forkert ND et al (2022) Magnetic particle imaging for assessment of cerebral perfusion and ischemia. Wiley Interdiscip Rev Nanomedicine Nanobiotechnology 14:e1757

    PubMed  Google Scholar 

  52. Vogel P, Ruckert MA, Klauer P et al (2014) Traveling wave magnetic particle imaging. IEEE Trans Magn 33:400–407

    Google Scholar 

  53. Graeser M, Thieben F, Szwargulski P et al (2019) Human-sized magnetic particle imaging for brain applications. Nat Commun 10:1–17

    CAS  Google Scholar 

  54. Mattingly E, Mason EE, Śliwiak M, Wald LL (2022) Drive and receive coil design for a human-scale MPI system. Int J Magn Part Imaging 8:8–11

    Google Scholar 

  55. Chandrasekharan P, Tay ZW, Zhou XY et al (2018) A perspective on a rapid and radiation-free tracer imaging modality, magnetic particle imaging, with promise for clinical translation. Br J Radiol 91:20180326

    PubMed  PubMed Central  Google Scholar 

  56. Salamon J, Dieckhoff J, Kaul MG et al (2020) Visualization of spatial and temporal temperature distributions with magnetic particle imaging for liver tumor ablation therapy. Sci Rep 10:7480

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Hensley D, Tay ZW, Dhavalikar R et al (2017) Combining magnetic particle imaging and magnetic fluid hyperthermia in a theranostic platform. Phys Med Biol 62:3483–3500

    PubMed  Google Scholar 

  58. Zhong J, Schilling M, Ludwig F (2021) Simultaneous imaging of magnetic nanoparticle concentration, temperature, and viscosity. Phys Rev Appl 16:054005

    CAS  Google Scholar 

  59. Utkur M, Saritas EU (2022) Simultaneous temperature and viscosity estimation capability via magnetic nanoparticle relaxation. Med Phys 49:2590–2601

    PubMed  Google Scholar 

  60. Chang M, Hou Z, Wang M et al (2021) Recent advances in hyperthermia therapy-based synergistic immunotherapy. Adv Mater 33:2004788

    CAS  Google Scholar 

  61. Rosensweig RE (2002) Heating magnetic fluid with alternating magnetic field. J Magn Magn Mater 252:370–374

    CAS  Google Scholar 

  62. Cabrera D, Rubia-Rodríguez I, Garaio E et al (2018) Instrumentation for magnetic hyperthermia. In: Fratila RM, Fuente JMDL (eds) Nanomaterials for Magnetic and Optical Hyperthermia Applications, 1st edn. Elsevier, pp 111–120

    Google Scholar 

  63. Dennis CL, Jackson AJ, Borchers JA et al (2009) Nearly complete regression of tumors via collective behavior of magnetic nanoparticles in hyperthermia. Nanotechnology 20:395103

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Deatsch AE, Evans BA (2014) Heating efficiency in magnetic nanoparticle hyperthermia. J Magn Magn Mater 354:163–172

    CAS  Google Scholar 

  65. Sohail A, Ahmad Z, Beg OA et al (2017) A review on hyperthermia via nanoparticle-mediated therapy. Bull Cancer 104:452–461

    PubMed  Google Scholar 

  66. Zhao Q, Wang L, Cheng R et al (2012) Magnetic nanoparticle-based hyperthermia for head & neck cancer in mouse models. Theranostics 2:113–121

    PubMed  PubMed Central  Google Scholar 

  67. Blanco-Andujar C, Ortega D, Southern P et al (2016) Real-time tracking of delayed-onset cellular apoptosis induced by intracellular magnetic hyperthermia. Nanomedicine 11:121–136

    CAS  PubMed  Google Scholar 

  68. Nieskoski MD, Trembly BS (2014) Comparison of a single optimized coil and a Helmholtz pair for magnetic nanoparticle hyperthermia. IEEE Trans Biomed Eng 61:1642–1650

    PubMed  Google Scholar 

  69. Gneveckow U, Jordan A, Scholz R et al (2004) Description and characterization of the novel hyperthermia- and thermoablation-system MFH (R) 300F for clinical magnetic fluid hyperthermia. Med Phys 31:1444–1451

    PubMed  Google Scholar 

  70. Hu S, Kang H, Baek Y et al (2018) Real-time imaging of brain tumor for image-guided surgery. Adv Healthc Mater 7:e1800066

    PubMed  PubMed Central  Google Scholar 

  71. Ellis S, Rieke V, Kohi M, Westphalen AC (2013) Clinical applications for magnetic resonance guided high intensity focused ultrasound (MRgHIFU): Present and future. J Med Imaging Radiat Oncol 57:391–399

    PubMed  Google Scholar 

  72. Fernando R, Downs J, Maples D, Ranjan A (2013) MRI-guided monitoring of thermal dose and targeted drug delivery for cancer therapy. Pharm Res 30:2709–2717

    CAS  PubMed  Google Scholar 

  73. Wilhelm S, Tavares AJ, Dai Q et al (2016) Analysis of nanoparticle delivery to tumours. Nat Rev Mater 1:16014

    CAS  Google Scholar 

  74. Lu Y, Rivera-Rodriguez A, Tay ZW et al (2020) Combining magnetic particle imaging and magnetic fluid hyperthermia for localized and image-guided treatment. Int J Hyperth 37:141–154

    CAS  Google Scholar 

  75. Tay ZW, Chandrasekharan P, Chiu-Lam A et al (2018) Magnetic particle imaging-guided heating in vivo using gradient fields for arbitrary localization of magnetic hyperthermia therapy. ACS Nano 12:3699–3713

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Shaterabadi Z, Nabiyouni G, Soleymani M (2018) Physics responsible for heating efficiency and self-controlled temperature rise of magnetic nanoparticles in magnetic hyperthermia therapy. Prog Biophys Mol Biol 133:9–19

    CAS  PubMed  Google Scholar 

  77. Chu KF, Dupuy DE (2014) Thermal ablation of tumours: biological mechanisms and advances in therapy. Nat Rev Cancer 14:199–208

    CAS  PubMed  Google Scholar 

  78. Ximendes E, Marin R, Shen Y et al (2021) Infrared-emitting multimodal nanostructures for controlled in vivo magnetic hyperthermia. Adv Mater 33:e2100077

  79. Mohri K, Uchiyama T, Shen LP et al (2002) Amorphous wire and CMOS IC-based sensitive micromagnetic sensors utilizing magnetoimpedance (MI) and stress-impedance (SI) effects. IEEE Trans Magn 38:3063–3068

    CAS  Google Scholar 

  80. Neumann A, Gräfe K, von Gladiss A et al (2022) Recent developments in magnetic particle imaging. J Magn Magn Mater 550:169037

  81. Goodwill PW, Conolly SM (2010) The X-space formulation of the magnetic particle imaging process: 1-D signal, resolution, bandwidth, SNR, SAR, and magnetostimulation. IEEE Trans Med Imaging 29:1851–1859

    PubMed  Google Scholar 

  82. Sadhukha T, Wiedmann TS, Panyam J (2013) Inhalable magnetic nanoparticles for targeted hyperthermia in lung cancer therapy. Biomaterials 34:5163–5171

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Maier-Hauff K, Ulrich F, Nestler D et al (2011) Efficacy and safety of intratumoral thermotherapy using magnetic iron-oxide nanoparticles combined with external beam radiotherapy on patients with recurrent glioblastoma multiforme. J Neurooncol 103:317–324

    PubMed  Google Scholar 

  84. Attaluri A, Ma R, Zhu L (2011) Using microCT imaging Tetchnique to quantify heat generation distribution induced by magnetic nanoparticles for cancer treatments. J Heat Transfer 133:15–17

    Google Scholar 

  85. Lebrun A, Manuchehrabadi N, Attaluri A et al (2013) Microct image-generated tumour geometry and sar distribution for tumour temperature elevation simulations in magnetic nanoparticle hyperthermia. Int J Hyperth 29:730–738

    Google Scholar 

  86. Johannsen M, Gneveckow U, Eckelt L et al (2005) Clinical hyperthermia of prostate cancer using magnetic nanoparticles: presentation of a new interstitial technique. Int J Hyperth 21:637–647

    CAS  Google Scholar 

  87. Mornet S, Vasseur S, Grasset F, Duguet E (2004) Magnetic nanoparticle design for medical diagnosis and therapy. J Mater Chem 14:2161–2175

    CAS  Google Scholar 

  88. Cantillon-Murphy P, Wald LL, Zahn M, Adalsteinsson E (2010) Proposing magnetic nanoparticle hyperthermia in low-field MRI. Concepts Magn Reson Part A Bridg Educ Res 36:36–47

    Google Scholar 

  89. Wang W, Li F, Li S et al (2021) M2 macrophage-targeted iron oxide nanoparticles for magnetic resonance image-guided magnetic hyperthermia therapy. J Mater Sci Technol 81:77–87

    CAS  Google Scholar 

  90. Wang X, Pan F, Xiang Z et al (2020) Magnetic Fe3O4@PVP nanotubes with high heating efficiency for MRI-guided magnetic hyperthermia applications. Mater Lett 262:127187

    CAS  Google Scholar 

  91. Fortuin AS, Brüggemann R, van der Linden J et al (2018) Ultra-small superparamagnetic iron oxides for metastatic lymph node detection: back on the block. Wiley Interdiscip Rev Nanomedicine Nanobiotechnology 10:1–10

    Google Scholar 

  92. Bulte JWM (2019) Superparamagnetic iron oxides as MPI tracers: a primer and review of early applications. Adv Drug Deliv Rev 138:293–301

    CAS  PubMed  Google Scholar 

  93. Paysen H, Loewa N, Stach A et al (2020) Cellular uptake of magnetic nanoparticles imaged and quantified by magnetic particle imaging. Sci Rep 10:1–8

    Google Scholar 

  94. Dhavalikar R, Rinaldi C (2016) Theoretical predictions for spatially-focused heating of magnetic nanoparticles guided by magnetic particle imaging field gradients. J Magn Magn Mater 419:267–273

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Bauer LM, Situ SF, Griswold MA, Samia ACS (2016) High-performance iron oxide nanoparticles for magnetic particle imaging-guided hyperthermia (hMPI). Nanoscale 8:12162–12169

    CAS  PubMed  Google Scholar 

  96. Wells J, Twamley S, Sekar A et al (2020) Lissajous scanning magnetic particle imaging as a multifunctional platform for magnetic hyperthermia therapy. Nanoscale 12:18342–18355

    CAS  PubMed  Google Scholar 

  97. Kratz H, Taupitz M, De Schellenberger AA et al (2018) Novel magnetic multicore nanoparticles designed for MPI and other biomedical applications: from synthesis to first in vivo studies. PLoS One 13:1–22

    Google Scholar 

  98. Chen L, Wu Y, Wu H et al (2019) Magnetic targeting combined with active targeting of dual-ligand iron oxide nanoprobes to promote the penetration depth in tumors for effective magnetic resonance imaging and hyperthermia. Acta Biomater 96:491–504

    CAS  PubMed  Google Scholar 

  99. Giouroudi I, Kosel J (2010) Recent progress in biomedical applications of magnetic nanoparticles. Recent Pat Nanotechnol 4:111–118

    CAS  PubMed  Google Scholar 

  100. Lu C, Han LB, Wang JN et al (2021) Engineering of magnetic nanoparticles as magnetic particle imaging tracers. Chem Soc Rev 50:8102–8146

    CAS  PubMed  Google Scholar 

  101. Hilger I (2013) In vivo applications of magnetic nanoparticle hyperthermia. Int J Hyperth 29:828–834

    Google Scholar 

  102. Fourmy D, Carrey J, Gigoux V (2015) Targeted nanoscale magnetic hyperthermia: challenges and potentials of peptide-based targeting. Nanomedicine 10:893–896

    CAS  PubMed  Google Scholar 

  103. Liu X, Zhang H, Zhang T et al (2022) Progress in biomedical engineering magnetic nanomaterials-mediated cancer diagnosis and therapy progress in biomedical engineering. Prog Biomed Eng 4:012005

    Google Scholar 

  104. Tang L, Casas J, Venkataramasubramani M (2013) Magnetic nanoparticle mediated enhancement of localized surface plasmon resonance for ultrasensitive bioanalytical assay in human blood plasma. Anal Chem 85:1431–1439

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Wadajkar AS, Menon JU, Tsai YS et al (2013) Prostate cancer-specific thermo-responsive polymer-coated iron oxide nanoparticles. Biomaterials 34:3618–3625

    CAS  PubMed  Google Scholar 

  106. Veiseh O, Gunn JW, Zhang M (2010) Design and fabrication of magnetic nanoparticles for targeted drug delivery and imaging. Adv Drug Deliv Rev 62:284–304

    CAS  PubMed  Google Scholar 

  107. Yang M, Cheng K, Qi S et al (2013) Affibody modified and radiolabeled gold-iron oxide hetero-nanostructures for tumor PET, optical and MR imaging. Biomaterials 34:2796–2806

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Chen JS, Chen J, Bhattacharjee S et al (2020) Functionalized nanoparticles with targeted antibody to enhance imaging of breast cancer in vivo. J Nanobiotechnology 18:135

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Nian D, Shi P, Sun J et al (2019) Application of luteinizing hormone-releasing hormone–ferrosoferric oxide nanoparticles in targeted imaging of breast tumors. J Int Med Res 47:1749–1757

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Luong D, Sau S, Kesharwani P, Iyer AK (2017) Polyvalent folate-dendrimer-coated iron oxide theranostic nanoparticles for simultaneous magnetic resonance imaging and precise cancer cell targeting. Biomacromol 18:1197–1209

    CAS  Google Scholar 

  111. Abakumov M, Nukolova NV, Sokolsky-Papkov M et al (2015) VEGF-targeted magnetic nanoparticles for MRI visualization of brain tumor. Nanomedicine 11:825–833

    CAS  PubMed  Google Scholar 

  112. Tomitaka A, Arami H, Gandhi S, Krishnan KM (2015) Lactoferrin conjugated iron oxide nanoparticles for targeting brain glioma cells in magnetic particle imaging. Nanoscale 7:16890–16898

  113. Zhang W, Liang X, Zhu L et al (2022) Optical magnetic multimodality imaging of plectin-1-targeted imaging agent for the precise detection of orthotopic pancreatic ductal adenocarcinoma in mice. EBioMedicine 80:104040

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Wang G, Li W, Shi G et al (2022) Sensitive and specific detection of breast cancer lymph node metastasis through dual-modality magnetic particle imaging and fluorescence molecular imaging: a preclinical evaluation. Eur J Nucl Med Mol Imaging 49:2723–2734

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Liao SH, Liu CH, Bastakoti BP, Suzuki N, Chang Y, Yamauchi Y, Lin FH, Wu KC (2015) Functionalized magnetic iron oxide/alginate core-shell nanoparticles for targeting hyperthermia. Int J Nanomedicine 10:3315–3327

  116. Sadhasivam S, Savitha S, Wu CJ et al (2015) Carbon encapsulated iron oxide nanoparticles surface engineered with polyethylene glycol-folic acid to induce selective hyperthermia in folate over expressed cancer cells. Int J Pharm 480:8–14

    CAS  PubMed  Google Scholar 

  117. Pala K, Serwotka A, Jeleń F et al (2013) Tumor-specifc hyperthermia with aptamer-tagged superparamagnetic nanoparticles. Int J Nanomed 9:67–76

    Google Scholar 

  118. Kruse AM, Meenach SA, Anderson KW, Hilt JZ (2014) Synthesis and characterization of CREKA-conjugated iron oxide nanoparticles for hyperthermia applications. Acta Biomater 10:2622–2629

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Cui D, Han Y, Li Z et al (2009) Fluorescent magnetic nanoprobes for in vivo targeted imaging and hyperthermia therapy of prostate Cancer. Nano Biomed Eng 1:61–74

    Google Scholar 

  120. DeNardo SJ, DeNardo GL, Miers LA et al (2005) Development of tumor targeting bioprobes (111In-chimeric L6 monoclonal antibody nanoparticles) for alternating magnetic field cancer therapy. Clin Cancer Res 11:7087–7093

    Google Scholar 

  121. Zuvin M, Kocak M, Unal O et al (2019) Nanoparticle based induction heating at low magnitudes of magnetic field strengths for breast cancer therapy. J Magn Magn Mater 483:169–177

    CAS  Google Scholar 

  122. Shinkai M, Le B, Honda H et al (2001) Targeting hyperthermia for renal cell carcinoma using human MN antigen-specific magnetoliposomes. Japanese J Cancer Res 92:1138–1146

    CAS  Google Scholar 

  123. Taratula O, Dani RK, Schumann C et al (2013) Multifunctional nanomedicine platform for concurrent delivery of chemotherapeutic drugs and mild hyperthermia to ovarian cancer cells. Int J Pharm 458:169–180

    CAS  PubMed  Google Scholar 

  124. Sato M, Yamashita T, Ohkura M et al (2009) N-propionyl-cysteaminylphenol-magnetite conjugate (NPrCAP/M) Is a nanoparticle for the targeted growth suppression of melanoma cells. J Invest Dermatol 129:2233–2241

    CAS  PubMed  Google Scholar 

  125. Fan C, Gao W, Chen Z et al (2011) Tumor selectivity of stealth multi-functionalized superparamagnetic iron oxide nanoparticles. Int J Pharm 404:180–190

    CAS  PubMed  Google Scholar 

  126. Du Y, Liu X, Liang Q et al (2019) Optimization and design of magnetic ferrite nanoparticles with uniform tumor distribution for highly sensitive MRI/MPI performance and improved magnetic hyperthermia therapy. Nano Lett 19:3618–3626

    CAS  PubMed  Google Scholar 

  127. Song G, Kenney M, Chen YS et al (2020) Carbon-coated FeCo nanoparticles as sensitive magnetic-particle-imaging tracers with photothermal and magnetothermal properties. Nat Biomed Eng 4:325–334. https://doi.org/10.1038/s41551-019-0506-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Soydan DA, Karaca S, Top CB (2022) Increasing the efficiency of open-sided field free line scanning MPI system using silicon-steel core. Int J Magn Part Imaging 8:8–10

    Google Scholar 

  129. Franke J, Baxan N, Lehr H et al (2020) Hybrid MPI-MRI system for dual-modal in situ cardiovascular assessments of real-time 3D blood flow quantification - a pre-clinical in vivo feasibility investigation. IEEE Trans Med Imaging 39:4335–4345

    PubMed  Google Scholar 

  130. Chandrasekharan P, Tay ZW, Hensley D et al (2020) Using magnetic particle imaging systems to localize and guide magnetic hyperthermia treatment: tracers, hardware, and future medical applications. Theranostics 10:2965–2981

    CAS  PubMed  PubMed Central  Google Scholar 

  131. International Commission on Non-Ionizing Radiation Protection (ICNIRP) (1993) Guidelines for limiting exposure to time-varying electric, magnetic, and electromagnetic fields (up to 300 GHz). International Commission on Non-Ionizing Radiation Protection. Health Phys 74:494–522

    Google Scholar 

  132. Schmale I, Gleich B, Schmidt J et al (2013) Human PNS and SAR study in the renquency range from 24 to 162 hHz. Int Work Magn Part Imag 259:22335

    Google Scholar 

  133. Bailey W, Bodemann R et al (2019) Synopsis of IEEE Std C95.1™-2019 “IEEE standard for safety levels with respect to human exposure to electric, magnetic, and electromagnetic fields, 0 Hz to 300 GHz.” IEEE Access 7:171346–171356

    Google Scholar 

  134. Ohki A, Kuboyabu T, Aoki M et al (2016) Quantitative evaluation of tumor response to combination of magnetic hyperthermia treatment and radiation therapy using magnetic particle imaging. Int J Nanomed Nanosurg 2(3). https://doi.org/10.16966/2470-3206.117

  135. Wust P, Hildebrandt B, Sreenivasa G et al (2002) Hyperthermia in combined treatment of cancer. Lancet Oncol 3:487–497

    CAS  PubMed  Google Scholar 

  136. Pan J, Hu P, Guo Y et al (2020) Combined magnetic hyperthermia and immune therapy for primary and metastatic tumor treatments. ACS Nano 14:1033–1044

    CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported in part by the National Key Research and Development Program of China under Grant: 2017YFA0700401; the National Nature Science Foundation of China under Grants: 62027901, 81827808, 81930053, and 81227901; the Beijing Natural Science Foundation (JQ22023); the CAS Youth Innovation Promotion Association under Grant: Y2022055; the Guangdong Key Research and Development Program of China (2021B0101420005); and the Project of High-Level Talents Team Introduction in Zhuhai City (Zhuhai HLHPTP201703).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yu An or Jie Tian.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lei, S., He, J., Gao, P. et al. Magnetic Particle Imaging-Guided Hyperthermia for Precise Treatment of Cancer: Review, Challenges, and Prospects. Mol Imaging Biol 25, 1020–1033 (2023). https://doi.org/10.1007/s11307-023-01856-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11307-023-01856-z

Key words

Navigation