Skip to main content
Log in

Component Models for Fuzzy Data

  • Published:
Psychometrika Aims and scope Submit manuscript

Abstract

The fuzzy perspective in statistical analysis is first illustrated with reference to the “Informational Paradigm–allowing us to deal with different types of uncertainties related to the various informational ingredients (data, model, assumptions). The fuzzy empirical data are then introduced, referring to J LR fuzzy variables as observed on I observation units. Each observation is characterized by its center and its left and right spreads (LR1 fuzzy number) or by its left and right “centers–and its left and right spreads (LR2 fuzzy number). Two types of component models for LR1 and LR2 fuzzy data are proposed. The estimation of the parameters of these models is based on a Least Squares approach, exploiting an appropriately introduced distance measure for fuzzy data. A simulation study is carried out in order to assess the efficacy of the suggested models as compared with traditional Principal Component Analysis on the centers and with existing methods for fuzzy and interval valued data. An application to real fuzzy data is finally performed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Bezdek, J.C. (1993). Fuzzy models—What are they, and why?. IEEE Transactions on Fuzzy Systems, 1, 1–.

    Google Scholar 

  • Bock, H.H., & Diday, E. (2000). Analysis of symbolic data: Exploratory methods for extracting statistical information from complex data. Heidelberg: Springer Verlag.

    Google Scholar 

  • Boulard, H., & Kamp, Y. (1988). Auto-association by multilayer perceptrons and singular value decomposition. Biological Cybernetics, 59, 291–94.

    Article  Google Scholar 

  • Cazes, P. (2002). Analyse factorielle d’un tableau de lois de probabilité. Revue de Statistique Appliqué, 50, 5–4.

    Google Scholar 

  • Cazes, P., Chouakria, A., Diday, E., & Schektman, Y. (1997). Extension de l’analyse en composantes principales à des donnés de type intervalle. Revue de Statistique Appliqué, 45, 5–4.

    Google Scholar 

  • Chouakria, A. (1998). Extension des méthodes d’analyse factorielle à des donnés de type intervalle. Unpublished doctoral dissertation. University of Paris 9 Dauphine.

  • Chouakria, A., Diday, E., & Cazes, P. (1998). Vertices principal component analysis with an improved factorial representation. In: A. Rizzi, M. Vichi, & H.H. Bock (Eds.), Advances in data science and classification (pp. 397–02). Barlin: Springer-Verlag.

    Google Scholar 

  • Colubi, A., Fernández-García, C., & Gil, M.A. (2002). Simulation of random fuzzy variables: An empirical approach to statistical/probabilistic studies with fuzzy experimental data. IEEE Transactions on Fuzzy Systems, 10, 384–90.

    Article  Google Scholar 

  • Coppi, R. (2002). A theoretical framework for data mining: The “Informational Paradigm.–Computational Statistics and Data Analysis, 38, 501–15.

    Article  Google Scholar 

  • Denœux, T., & Masson, M. (2004). Principal component analysis of fuzzy data using autoassociative neural networks. IEEE Transactions on Fuzzy Systems, 12, 336–49.

    Article  Google Scholar 

  • Dubois, D., & Prade, H. (1988). Possibility theory. New-York: Plenum Press.

    Google Scholar 

  • D’Urso, P., & Giordani, P. (2005). A possibilistic approach to latent component analysis for symmetric fuzzy data. Fuzzy Sets and Systems, 150, 285–05.

    Article  Google Scholar 

  • Giordani, P., & Kiers, H.A.L. (2004). Principal component analysis of symmetric fuzzy data. Computational Statistics and Data Analysis, 45, 519–48.

    Article  Google Scholar 

  • Gower, J.C. (1975). Generalized Procrustes analysis. Psychometrika, 40, 33–1.

    Article  Google Scholar 

  • Helton, J.C., Johnson, J.D., & Oberkampf, W.L. (2004). An exploration of alternative approaches to the representation of uncertainty in model predictions. Reliability Engineering and System Safety, 85, 39–1.

    Article  Google Scholar 

  • Herrera, F., Herrera-Viedma, E., & Verdegay, J.L. (1997). Linguistic measures based on fuzzy coincidence for researching consensus in group decision making. International Journal of Approximate Reasoning, 16, 309–34.

    Article  Google Scholar 

  • Huskisson, E.C. (1983). Visual analogue scales. In R. Melzack, (Ed.), Pain measurement and assessment (33–7). New York: Raven.

    Google Scholar 

  • Jaulin, L., Kieffer, M., Didrit, O., & Walter, E. (2001). Applied interval analysis. New York: Springer-Verlag.

    Google Scholar 

  • Kiers, H.A.L., (2004). Bootstrap confidence intervals for three-way methods. Journal of Chemometrics, 18, 22–6.

    Article  Google Scholar 

  • Kiers, H.A.L., & Van Mechelen, I. (2001). Three-way component analysis: Principles and illustrative application. Psychological Methods, 6, 84–10.

    Article  PubMed  Google Scholar 

  • Kroonenberg, P.M. (1983). Three-mode principal component analysis: Theory and applications. Leiden: DSWO Press.

    Google Scholar 

  • Kroonenberg, P.M. (1994). The TUCKALS line—A suite of programs for three-way data analysis. Computational Statistics and Data Analysis, 18, 73–6.

    Article  Google Scholar 

  • Lauro, C., & Palumbo, F. (2000). Principal component analysis of interval data: A symbolic data analysis approach. Computational Statistics, 15, 73–7.

    Article  Google Scholar 

  • Little, R.J.A., & Rubin, D.B. (2002). Statistical analysis with missing data. New York: Wiley.

    Google Scholar 

  • Montenegro, M., Colubi, A., Casals, M.R., & Gil, M.A. (2004). Asymptotic and bootstrap techniques for testing the expected value of a fuzzy random variable. Metrika, 59, 31–9.

    Article  Google Scholar 

  • Näther, W., & Körner, R. (2002). Linear regression with random fuzzy variables. In C. Bertoluzza, M.A. Gil, & D.A. Ralescu (Eds.), Statistical modeling, analysis and management of fuzzy data (pp. 282–05). Heidelberg: Physica-Verlag.

    Google Scholar 

  • Palumbo, F., & Lauro, C. (2003). A PCA for interval-valued data based on midpoints and radii. In H. Yanai, A. Okada, K. Shigemasu, Y. Kano, & J. Meulman (Eds.), New developments in psychometrics (pp. 641–48). Tokyo: Springer Verlag.

    Google Scholar 

  • Puri, M.L., & Ralescu, D.A. (1986). Fuzzy random variables. Journal of Mathematical Analysis and Application, 114, 409–22.

    Article  Google Scholar 

  • Rodriguez Rojas, O. (2000). Classification et modèles linéaires de l’analyse des donnés symboliques. Unpublished doctoral dissertation. University of Paris 9 Dauphine.

  • Ruspini, E.H., Bonissone, P., & Pedrycz, W. (1998). Handbook of fuzzy computation. Bristol: Institute of Physics.

    Book  Google Scholar 

  • Sii, H.S., Ruxton, T., & Wang, J. (2001). A fuzzy-logic-based approach to qualitative safety modelling for marine systems. Reliability Engineering and System Safety, 73, 19–4.

    Article  Google Scholar 

  • Tanaka, H., & Guo, P. (1999). Possibilistic data analysis for operations research. Heidelberg: Physica-Verlag.

    Google Scholar 

  • Tang Ahanda, B. (1998). Extension de méthodes d’analyse factorielle sur des donnés symboliques. Unpublished doctoral dissertation. University of Paris 9 Dauphine.

  • Timmerman, M.E., & Kiers, H.A.L. (2002). Three-way component analysis with smoothness constraints. Computational Statistics and Data Analysis, 40, 447–70.

    Article  Google Scholar 

  • Timmerman, M.E., Kiers, H.A.L., & Smilde, A.K. (in press). Estimating confidence intervals in principal component analysis: A comparison between the bootstrap and asymptotic results. British Journal of Mathematical and Statistical Psychology.

  • Yang, M.S., & Ko, C.H. (1996). On a class of c-numbers clustering procedures for fuzzy data. Fuzzy Sets and Systems, 84, 49–0.

    Article  Google Scholar 

  • Zadeh, L. A. (1965). Fuzzy sets. Information Control, 8, 338–53.

    Article  Google Scholar 

  • Zadeh, L.A. (1973). Outline of a new approach to the analysis of complex system and decision processes. IEEE Transactions on Systems, Man and Cybernetics, 3, 28–4.

    Google Scholar 

  • Zadeh, L.A. (2002). Toward a perception-based theory of probabilistic reasoning with imprecise probabilities. Journal of Statistical Planning and Inference, 105, 233–64.

    Article  Google Scholar 

  • Zadeh, L.A. (2005). Toward a generalized theory of uncertainty (GTU)—An outline. Information Sciences, 172, 1–0.

    Article  Google Scholar 

  • Zimmermann, H.J. (2001). Fuzzy set theory and its applications. Dordrecht: Kluwer Academic.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paolo Giordani.

Additional information

We would like to express our gratitude to the Editor, the Associate Editor, and the Referees whose comments and suggestions improved significantly the quality of the paper.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Coppi, R., Giordani, P. & D’Urso, P. Component Models for Fuzzy Data. Psychometrika 71, 733–761 (2006). https://doi.org/10.1007/s11336-003-1105-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11336-003-1105-1

Key words

Navigation