Skip to main content
Log in

Order-Constrained Solutions in K-Means Clustering: Even Better Than Being Globally Optimal

  • Theory and Methods
  • Published:
Psychometrika Aims and scope Submit manuscript

Abstract

This paper proposes an order-constrained K-means cluster analysis strategy, and implements that strategy through an auxiliary quadratic assignment optimization heuristic that identifies an initial object order. A subsequent dynamic programming recursion is applied to optimally subdivide the object set subject to the order constraint. We show that although the usual K-means sum-of-squared-error criterion is not guaranteed to be minimal, a true underlying cluster structure may be more accurately recovered. Also, substantive interpretability seems generally improved when constrained solutions are considered. We illustrate the procedure with several data sets from the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Al-Sultan, K. (1995). A tabu search approach to the clustering problem. Pattern Recognition, 28, 1443–1451.

    Article  Google Scholar 

  • Babu, G.P., & Murty, M.N. (1994). Simulated annealing for selecting optimal initial seeds in the K-means algorithm. Indian Journal of Pure and Applied Mathematics, 25, 85–94.

    Google Scholar 

  • Baker, F.B., & Hubert, L.J. (1977). Applications of combinatorial programming to data analysis: Seriation using asymmetric proximity measures. British Journal of Mathematical and Statistical Psychology, 30, 154–164.

    Google Scholar 

  • Brusco, M.J., & Cradit, J.D. (2004). Graph coloring, mimimum-diameter partitioning, and the analysis of confusion matrices. Journal of Mathematical Psychology, 48, 301–309.

    Article  Google Scholar 

  • Brusco, M.J., & Cradit, J.D. (2005). Bicriterion methods for partitioning dissimilarity matrices. British Journal of Mathematical and Statistical Psychology, 58, 319–332.

    Article  PubMed  Google Scholar 

  • Brusco, M.J., & Stahl, S. (2001a). An interactive multiobjective programming approach to combinatorial data analysis. Psychometrika, 66, 5–24.

    Article  Google Scholar 

  • Brusco, M.J., & Stahl, S. (2001b). Compact integer-programming models for extracting subsets of stimuli from confusion matrices. Psychometrika, 66, 405–420.

    Article  Google Scholar 

  • Brusco, M.J., & Stahl, S. (2005). Branch-and-bound applications in combinatorial data analysis. New York: Springer.

    Google Scholar 

  • Chang, W.C. (1983). On using principal components before separating a mixture of two multivariate normal distributions. Applied Statistics, 32, 267–275.

    Article  Google Scholar 

  • Delattre, M., & Hansen, P. (1980). Bicriterion cluster analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2, 277–291.

    Article  Google Scholar 

  • Fisher, R.A. (1936). The use of multiple measurements in taxonomic problems. Annals of Eugenics, 7, 179–188.

    Google Scholar 

  • Fisher, W.D. (1958). On grouping for maximum heterogeneity. Journal of the American Statistical Association, 53, 789–798.

    Article  Google Scholar 

  • Forgy, E.W. (1965). Cluster analysis of multivariate data: Efficiency versus interpretability of classifications. Biometrics, 21, 768–769.

    Google Scholar 

  • Hansen, P., & Mladenovic, N. (2001). J-Means: A new local search heuristic for minimum sum of squares clustering. Pattern Recognition, 34, 405–413.

    Article  Google Scholar 

  • Hartigan, J. (1975). Clustering algorithms. New York: Wiley.

    Google Scholar 

  • Hubert, L., & Arabie, P. (1985). Comparing partitions. Journal of Classification, 2, 193–218.

    Article  Google Scholar 

  • Hubert, L., Arabie, P., & Meulman, J. (2001). Combinatorial data analysis: Optimization by dynamic programming. Philadelphia: SIAM.

    Google Scholar 

  • Hubert, L., Arabie, P., & Meulman, J. (2006). The structural representation of proximity matrices with MATLAB. Philadelphia: SIAM.

    Google Scholar 

  • Kiplinger’s personal finance. In Kiplinger’s personal finance (Vol. 57, pp. 104–123).

  • MacQueen, J. (1967). Some methods of classification and analysis of multivariate observations. In L.M. Le Cam & J. Neyman (Eds.), Proceedings of the fifth Berkeley symposium on mathematical statistics and probability (Vol. 1, pp. 281–297). University of California Press: Berkeley.

    Google Scholar 

  • Milligan, G.W. (1980). An examination of the effect of six types of error perturbation on fifteen clustering algorithms. Psychometrika, 45, 325–342.

    Article  Google Scholar 

  • Milligan, G.W., & Cooper, M.C. (1985). An examination of procedures for determining the number of clusters in a data set. Psychometrika, 50, 159–179.

    Article  Google Scholar 

  • Milligan, G.W., & Cooper, M.C. (1988). A study of standardization of variables in cluster analysis. Journal of Classification, 5, 181–204.

    Article  Google Scholar 

  • Mirkin, B. (2005). Clustering for data mining. New York: Chapman & Hall.

    Google Scholar 

  • Pacheco, J., & Valencia, O. (2003). Design of hybrids for the minimum sum-of-squares clustering problem. Computational Statistics and Data Analysis, 43, 235–248.

    Google Scholar 

  • Späth, H. (1980). Cluster analysis algorithms. Chichester: Ellis Horwood.

    Google Scholar 

  • Steinley, D. (2003). K-means clustering: What you don’t know may hurt you. Psychological Methods, 8, 294–304.

    Article  PubMed  Google Scholar 

  • Steinley, D. (2004a). Standardizing variables in K-means clustering. In D. Banks, L. House, F.R. McMorris, P. Arabie, & W. Gaul (Eds.), Classification, clustering, and data mining applications (pp. 53–60). New York: Springer.

    Google Scholar 

  • Steinley, D. (2004b). Properties of the Hubert-Arabie adjusted Rand index. Psychological Methods, 9, 386–396.

    Article  PubMed  Google Scholar 

  • Steinley, D. (2006a). K-means clustering: A half-century synthesis. British Journal of Mathematical and Statistical Psychology, 59, 1–34.

    Article  PubMed  Google Scholar 

  • Steinley, D. (2006b). Profiling local optima in K-means clustering: Developing a diagnostic technique. Psychological Methods, 11, 178–192.

    Article  PubMed  Google Scholar 

  • Steinley, D., & Brusco, M.J. (2007). Initializing K-means batch clustering: A critical evaluation of several techniques. Journal of Classification, 24, 99–121.

    Article  Google Scholar 

  • Steinley, D., & Brusco, M.J. (2008, in press). A new variable weighting and selection procedure for K-means cluster analysis. Multivariate Behavioral Research.

  • Steinley, D., & Henson, R. (2005). OCLUS: An analytic method for generating clusters with known overlap. Journal of Classification, 22, 221–250.

    Article  Google Scholar 

  • Theise, E.S. (1989). Finding a subset of stimulus-response pairs with minimum total confusion: A binary integer programming approach. Human Factors, 31, 291–305.

    Google Scholar 

  • Thorndike, R.L. (1953). Who belongs in the family? Psychometrika, 18, 267–276.

    Article  Google Scholar 

  • Van Ness, J.W. (1973). Admissible clustering procedures II. Biometrika, 60, 422–424.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Douglas Steinley.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Steinley, D., Hubert, L. Order-Constrained Solutions in K-Means Clustering: Even Better Than Being Globally Optimal. Psychometrika 73, 647–664 (2008). https://doi.org/10.1007/s11336-008-9058-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11336-008-9058-z

Keywords

Navigation